
1

OO concepts
UML representation
Objects, Classes, Messages/Methods
Inheritance, Polymorphism, Dynamic Binding
Abstract Classes, Abstract Coupling

2

Lecture notes at:

http://www.softwareresearch.net/index.php?id=220

3

Objects in UML

Object notation

Martin : Person

object

object
name

object
class

An object diagram provide a run time snapshot of the
system, representing objects and the connections
between them

4

Object diagram

5

Class relationships (I)

An association can be refined by other relations

Often one models first only the fact that two classes are
related and refines later this general notation element

Association

Inheritance
Aggregation (has-a)

Dependence

6

Class relationships (II)

Each association can be named with a text label (like in
the ER-model)
Role names can be specified at association ends
Multiplicity can be marked at association ends
A class can have an association with itself, expressing a
relationship between objects of the same class

Class A Class Blabelmultiplicity A
role A

multiplicity B
role B

7

Class relationships (III)

Multiplicity specification:

1 exactly one
* any (0 or more)
0..* any (0 or more)
1..* 1 or more
0..1 0 or 1
2..5 range of values
1..5, 9 range of values or nine

8

Class relationships (IV)

Example:

9

Inheritance
Polymorphism

Dynamic Binding

10

Inheritance (I)

A class defines the type of an object

If one models for example a class Customer
and a class CorporateCustomer, one expects
that each object of type CorporateCustomer to
be also of type Customer. The type
CorporateCustomer is a subtype of Customer.

11

Inheritance (II)

A superclass generalizes a
subclass
A subclass specializes a
superclass
A subclass inherits methods and
attributes of its superclass

12

Inheritance(III)

A subclass has the following possibilities
to specialize its behavior:

Defining new operations and attributes
Modifying existing operations
(overwriting methods of the superclass)

Flatten view:

iv1
iv2
iv3

m1()
m2()
m3()
m4()

m1()
m4()
m5()

iv4

iv1
iv2
iv3

m1()
m2()
m3()
m4()

m5()
m4()
m3()
m2()
m1()

iv4
iv3
iv2
iv1

13

Inheritance (IV)

UML Notation

Customer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

14

Inheritance (V)

„delta“ view Flatten view
(not in standard UML!)

15

Inheritance and access rights

Private members of a superclass are not accessible in
subclasses
Protected members of a superclass are accessible only
in subclasses
Public members are accessible everywhere
Access rights can be specified globally for a superclass
(C++):
class R : private A{ /* ... */ };
class S : protected A{ /* ... */ };
class T : public A{ /* ... */ };

16

Inheritance in Java

Java supports single inheritance, where each class has
at most one superclass

The keyword is extends

Example:

public class CorporateCustomer extends Customer{
...

}

17

Inheritance in C++

class Base {

protected: int i;

};

class Derived : public Base {

int f(Base* b) { return b->i; }

int g(Derived* d) { return d->i; }

};

18

Inheritance
Polymorphism
Dynamic Binding

19

Polymorphism (I)

An object type can be poly (=multiple) morph (=form).
This can be depicted in the same way as plug-
compatibility:

Objects compatible
with the plug

„Plug“-Standard

20

Inheritance example revisited

Customer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

21

Polymorphism (II)

Objects of type CorporateCustomer (subclass) keep at
least the same contract as objects of type Customer
(superclass).
Therefore it is meaningful to consider that an object of
class Ai, which is a subclass of class A, is not only of
type Ai but also of the types given by all Ai‘s
superclasses (starting with A).
An object has not only one type. It has multiple
types, and the number of types is given by the position
of the class from which the object is generated in the
class hierarchy.

22

Polymorphism – Example (I)

Customer customer = new Customer();
PrivateCustomer privateCustomer = new PrivateCustomer();
CorporateCustomer corporateCustomer= new CorporateCustomer();

Customer

checkRegularCustomer() customer

PrivateCustomer

checkRegularCustomer() privateCustomer

CorporateCustomer
checkRegularCustomer() corporateCustomer

report(ActivityReport)

23

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (II)

customer = privateCustomer; // OK

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

24

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (III)

customer = corporateCustomer; // OK

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

25

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (IV)

privateCustomer = customer; // wrong

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

26

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (V)

corporateCustomer = customer; // wrong

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

27

Polymorphism – Example (VI)

The reason for failure is that an object which is an
instance of class Customer does not understand all
method calls that an object which is an instance of class
CorporateCustomer understands.

(1) corporateCustomer = customer;
(2) corporateCustomer.report(monthlyReport);

(1) Type mismatch: cannot convert from
CorporateCustomer to Customer

(2) The method report(activityReport) is undefined for
the type Customer.

28

Polymorphism – Example (VII)

Person

+getBirthDate():String
+getHealthHistory():String

Hospital Investor

Company

+getDevelopmentPlan():Plan

Hotel

+Customer[]
+addCustomer(Customer):void

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

Hotel

+PrivateCustomer[]
+CorporateCustomer[]
+addPrivateCustomer(PrivateCustomer):void
+addCorporateCustomer(CorporateCustomer():void

Customer

+checkRegularCustomer():boolean

29

Static and dynamic type

Static type
Accurately given by the declaration in the program text
Example: customer is of static type Customer

Dynamic type
The type of the referenced object at runtime
Example: after customer=corporateCustomer, the dynamic
type of customer is CorporateCustomer

A variable with a static type can have several dynamic types during
its lifetime, depending of the width and depth of the class hierarchy

30

Dynamic binding (I)

Dynamic binding: The compiler does not specify which
method is called at runtime . The method is determined
at runtime based on

The method name
The variable‘s dynamic type

Customer c;
if (i > 0) then

c = new CorporateCustomer();
else

c = new PrivateCustomer();
...
c.checkRegularCustomer();

31

Dynamic binding (II)

When (i > 0) is true, the variable c references an
object generated from the class CorporateCustomer (and
thus has the dynamic type CorporateCustomer). Hence,
the call to checkRegularCustomer() is linked to the
method as implemented in CorporateCustomer.

In Java, all methods are dynamically bound, except for
the ones explicitly marked by using the keyword static.

In C++, by contrast, methods must be explicitly marked
as dynamically bound by using the keyword virtual.

32

Dynamic binding (III)

Dynamic binding can be used for the plug-in concept

For example, the yellow object may implement m1()
differently than the red object

m1()

m1()

m1()

call m1

33

Inheritance exercise
public class BaseTest {

protected int protMember;

BaseTest(int i){
protMember = i;

}
}

public class DerivedA extends BaseTest{

DerivedA(int i) {
super(i);

}

public void printProt(BaseTest bt){
System.out.println("Value in base class is " + bt.protMember);

}

public void printProt(DerivedB db){
System.out.println("Value in derived class is " + db.protMember);

}
}

public class DerivedB extends BaseTest {

DerivedB(int i) {
super(i);

}
}

public class Worker {

DerivedA da;
DerivedB db;
BaseTest bt;

public void work(){
db = new DerivedB(2);
da = new DerivedA(1);
da.printProt(db);
bt = db;
da.printProt(bt);

}

public static void main(String[] args) {
Worker wk = new Worker();
wk.work();

}
}

34

Inheritance exercise
public class BaseTest {

protected static int protMember;

BaseTest(int i){
protMember = i;

}
}

public class DerivedA extends BaseTest{

DerivedA(int i) {
super(i);

}

public void printProt(BaseTest bt){
System.out.println("Value in base class is " + bt.protMember);

}

public void printProt(DerivedB db){
System.out.println("Value in derived class is " + db.protMember);

}
}

public class DerivedB extends BaseTest {

DerivedB(int i) {
super(i);

}
}

public class Worker {

DerivedA da;
DerivedB db;
BaseTest bt;

public void work(){
db = new DerivedB(2);
da = new DerivedA(1);
da.printProt(db);
bt = db;
da.printProt(bt);

}

public static void main(String[] args) {
Worker wk = new Worker();
wk.work();

}
}

35

The diamond problem

Animal

+talk():void

BestPet

Cat

+talk():void

Dog

+talk():void

Animal myPet = new BestPet();
myPet.talk();

This problem does not
occur in Java

36

Is-A and Has-A

Tank

BigMetal

+load():void

Cannon

+load():void

Car

+load():void

Typical error: Is-A instead of
Has-A

37

Type test and type guard in Java

Type test: Inquiry of the dynamic type
Type guard: runtime checking of type casting

Example:

if(customer instanceof CorporateCustomer){ // test

CorporateCustomer corpCust = (CorporateCustomer)customer; //guard
...

}

if(customer instanceof CorporateCustomer)

((CorporateCustomer)customer).report(monthlyReport);

38

Understanding
Interactions

Between Objects

39

Object Game

Play a hotel room
reservation
scenario

