
Energy Efficiency in Cloud Computing

Christoph Aschberger, Franziska Halbrainer

July 18, 2013

1 Introduction

In the last years cloud computing has become more and more popular. This
increase in popularity of cloud services results in higher resource demands on the
providers end. More resources means more energy consumption and thus higher
electricity bills. To get an idea how much energy is consumed by a cloud service
provider we found that Google published their energy consumption in 2011 to
have been 2,675,898 MWh [4]. To better grasp this number they compared it
to energy usage of an American city:

We found that we use roughly as much electricity globally as 220,000
people, based on electricity use per capita in the US. If we compared
our electricity use to, say, an American city, we’d most closely com-
pare to the metropolitan area of Sioux Falls, South Dakota. [5]

There is a need to make a cloud service more profitable by reducing energy
usage while at the same time keeping the service level for the customer. In this
paper we want to discuss several ways found in scientific literature to achieve
this goal.

The easiest and most obvious way to save energy is to run fewer machines.
This however comes with a trade off. Customers expect the cloud to handle sud-
den increases in demand, as such it is not as simple as turning unused machines
off. As a result algorithms are needed to decide in a smart way which machines
can be turned off and if new machines should be powered up. Moreover to get
empty machines to turn off, scheduling needs energy awareness.

Since most modern machines have different power states, it is also an option
to power on/off not directly but by passing through these different states. By
running machines in low power state they need less energy but do not provide
their full capacity. But the change from one power state to its next is much
faster than from full capacity to turned off, so sudden increases can easier be
served.

The remainder of this paper is organized as follows. Section 2 gives a general
idea about energy consumption and workload placement in the cloud. Section
3 presents several methods for workload placement focusing on energy saving
and for every method its preconditions, the basic idea and the evaluation. In
section 4 we draw a conclusion on this paper.

1

2 General

2.1 Energy Model

When talking about energy efficiency in clouds one has to identify the com-
ponents that consume energy and needs to analyze how much energy these
components consume on different workloads. In [9] the energy consumption of
a cloud over a time span is calculated as shown in the following equations:

ECloud =

∫ t2

t1

ENodes + ESwitches + EStorages + EOthersdt (1)

ENode = ECPU + EMemory + EDisk + EMainboard + ENIC (2)

ESwitch = EChassis + ELinecards + EPorts (3)

EStorage = ENASServer + EStorageController + EDiskArray (4)

Although these factors all influence the total used energy most of the meth-
ods we present mainly focus on reducing the number of nodes. Energy usage
of switches is only indirectly taken into account by trying to move workloads
as few times as possible. One method focuses solely on reducing CPU usage
(3.1.1).

2.2 Cloud Model

In the following methods there is one fundamental difference: the cloud model.
Either tasks or virtual machines are executed in the cloud. This affects the
possible approaches to energy saving.

Tasks have a nice advantage for energy aware scheduling, since many require-
ments are known in advance. For example the exact needed CPU usage must
be known and more importantly it is required to know the execution time. The
given values are not considered to be an upper bound but what a task really
needs for the whole execution time. Since the execution times are known it is
also clear when a resource is free again.

Virtual machines (VM) on the other hand are allocated to physical ma-
chines (PM or host) based on an upper bound that is given by the customer
and the VM might use less than agreed upon. Lifetime of a virtual machine
is unknown because customers reserve instances and pay for them as long as
they are running. As a result machines might stop suddenly or run indefinitely.
An energy aware scheduling algorithm for VMs must not only handle sudden
increases but should also be capable of sudden decreases.

2.3 VM migration [2, 1]

As VMs in a cloud computing environment may have different requirements
over time one has to consider adapting to this changing behavior. There is a
possibility that a VM does not need the agreed performance and this opens a
chance to allocate more VMs on a PM than would fit when only considering

2

Figure 1: migrating VM1 from PM1 to PM2 [2]

the maximum needed characteristics. If one of the VMs would need more of a
resource than is available on the current PM it has to be moved to a different one.
By distributing all VMs of a PM to other under utilized hosts the then unused
PM can be switched off. The process of moving a VM to another physical
location is called (live)migration. Migration however does not come without
costs. The performance of a VM during migration may be degraded, additional
energy is needed while the VM is allocated on two hosts as illustrated in figure
1 and the network load is increased for the migration time. There is a trade off
between using as few PMs as possible and risking migrating often or minimizing
the number of migrations at the cost of powering more PMs. One also has to
consider that switching hosts off and on takes time, therefore a machine just
turned off is not immediately available for migration. To compensate that either
some additional unused machines need to be kept powered on or can only put
into sleep or hibernate state to quickly react to sudden load peaks.

3 Approaches

3.1 Task

3.1.1 Dynamic Voltage Frequency Scaling [6]

Preconditions A heterogeneous hardware basis is assumed. Hosts need to
support DVFS. The tasks may vary in their needs.

Method The energy usage E of a task running with a certain frequency f
can be expressed with the following equation

E = k · v2 · f ·∆t (5)

where k is a device dependent constant, v is the voltage and ∆t is the
execution time.

Since in many cases the important thing about a task execution is when it
has to be finished, it might not be necessary to execute every task with the
maximum possible frequency.

3

By lowering the frequency of a task a lower voltage level can be set for the
CPU. Lower frequency leads to a longer execution time but due to the quadratic
occurrence of the voltage in equation 5 lowering voltage leads to a decrease in
energy usage.

The authors assume an interdependent set of tasks which can be executed in
parallel. They formulate the problem as a Directed Acyclic Graph (DAG) with
the tasks as nodes and the edge weights as communication time. If two tasks
with dependencies are executed on different processors the communication time
has to be considered, if located on the same processor this time is reduced to
zero. To map the tasks onto processors they use a a near-optimal list-scheduling
heuristic called Heterogeneous Earliest Finish Time (HEFT).

After the mapping phase idle and processing times of each processor can
be determined. To optimize energy usage each execution time of a task is
expanded to the time span reaching from the earliest possible start time to the
latest possible finish time. Earliest possible start time is the time when all the
tasks the current task depends on are finished. Latest possible finish time is the
minimum of the latest start time of all tasks that depend on the current task.
Slack time is the difference between this time span and the execution time at
highest frequency. This time can be used to slow the computation down and
save energy. In theory, if no overlapping occurs, the slack time can be added
to the execution time and the frequency can be set to a value which uses this
whole time for execution. In practice this might lead to overlapping execution
times, therefore this frequency needs to be adjusted.

For finding the right frequency one has to start with the task ni with the
global latest finish time and build a set S = {ni}. All tasks which have overlap-
ping execution times with at least one task in S and are mapped to the same
processor must be added to S. Then Texec(S) can be defined as the sum of all
execution times of tasks in set S and Ttotal(S) as earliest earliest start time -
latest latest finish time. The frequency of task ni can then be set as seen in
equation 6:

fglobal(ni) = fmax max

(
Texec(ni)

Texec(ni) + Tslack(ni)
,
Texec(S)

Ttotal(S)

)
(6)

This ensures that the frequency is not too slow to exceed its own execution
time nor too slow to force the other tasks of the set to run with more than 100%
frequency.

After the frequency is determined the execution time of the task needs to be
updated. This might also influence execution times of preceding tasks, which
need updates for their execution times and deadlines as well. Then a new ni
with a new set S needs to be found, excluding all already handled tasks. These
steps are repeated until the frequency for each task is set.

With this algorithm a global optimum can be found.
Table 1 shows some tasks with their execution time used for the following

example. Table 2 shows available frequency levels and their associated volt-
age levels. Figure 2 shows the DAG with nodes being the tasks and edges
being dependencies. The weight of an edge is the communication time if tasks
are scheduled to different processors. It also shows the initial scheduling after
applying HEFT. As the scheduling in this example results in a fully utilized
processor P1 only P2 needs optimization. To calculate the energy consumption

4

task 1 2 3 4 5 6
texec 1 1 2 1 4 1

Table 1: sample tasks with execution times

frequency 100% 80% 60% 50% 40% 33.3%
voltage 1.2v 1.1v 1.0v 0.9v 0.8v 0.7v

Table 2: frequency and voltage levels

of P2 the following equation can be used.

Etotal = Etasks + Eidle (7)

The initial scheduling would result in the energy consumption of
Etotal(initial) = k ·

(
1.22 · 1 · 2 + 0.72 · 1

3 · 6
)

= 3.86 · k
Figure 3 shows the optimized schedule of P2. Tasks 2 and 4 run for twice

the time with halved frequency which eliminates some idle time.
The optimized schedule results in an energy consumption of

Etotal(slacked) = k ·
(
0.92 · 1

2 · 4 + 0.72 · 1
3 · 4

)
= 2.273 · k

Evaluation The proposed algorithm is compared to a greedy based approach,
a path based approach and an energy conscious scheduling algorithm. The sim-
ulated hardware is based on three real heterogeneous processors. For test sets
randomly constructed DAGs as well as DAGs from a real world application
of a Gaussian elimination algorithm were used. Measured were the total en-
ergy consumption and compared to the original HEFT schedule. The proposed
algorithm is for most of the test cases the most energy efficient.

3.1.2 Task consolidation [8]

Preconditions A homogeneous hardware basis is assumed. The tasks may
vary in their needs. CPU requirements and time constraints of a task are known
or can be estimated beforehand.

Method Consolidation can be used when operating on the level of tasks.
Instead of running each task on its own machine, tasks which require only a
fraction of the total resources may be placed on the same machine. This results
in energy savings because the energy usage of running two tasks on the same

Figure 2: DAG and initial mapping [6]

5

Figure 3: scheduling after slacking [6]

Task Arrival time Processing time Utilization
0 0 20 40%
1 3 8 50%
2 7 23 20%
3 14 10 40%
4 20 15 70%

Table 3: sample tasks

machine is smaller than running each task on its own machine. The scope of
the paper is focused on short tasks and decisions for a short term. To decide
on which machine a task will be executed a cost function is calculated for every
host and the task is assigned to the machine with the highest value. There are
two different cost functions: MaxUtil and ECTC.

To show the different effects of the cost functions the sample tasks as shown
in table 3 are used in the example figures.

MaxUtil aims to utilize available resources as much as possible, by choos-
ing the solution where the average utilization during the task execution is the
highest.

fi,j =

∑τ0
τ=1 Ui
τ0

(8)

Equation 8 shows the cost function of MaxUtil where Ui is the utilization of
a resource ri at a given time. From the equation one can determine the worst
and best case. Best case is achieved when the utilization during the period is
maximized. The worst case is when the task is the only one running on the
machine.

Figure 4 shows how MaxUtil would allocate task t3 when tasks t0, t1 and
t2 are already running. Task t3 could either be allocated to r0 or r1 with the
values of cost functions of f0,3 = 6·40%

10 = 0.24 and f1,3 = 10·20%
10 = 0.2.

As r0 yields a higher value t3 is scheduled to r0.

ECTC calculates the energy consumption of a task and subtracts the idle
consumption if other tasks are allocated on this PM at the same time. This
is necessary to make solutions where only one task is allocated on PMs less
appealing.

fi,j = ((p∆ · uj + pmin) · τ0)− ((p∆ · uj + pmin) · τ1 + p∆ · uj · τ2) (9)

6

Figure 4: scheduling task t3 on r0 using MaxUtil [8]

Figure 5: scheduling task t3 on r1 [8]

Equation 9 shows the cost function of ECTC where τ0 = τ1 + τ2, τ1 is the
time at which the task runs alone on the machine, τ2 is the time at which the
task does not run alone on the machine, p∆ = pmax − pmin, pmin is the energy
consumption of an idle machine, pmax is the maximal energy consumption of
the machine.

For the assumed homogeneous hardware basis this equation can be simplified
to equation 10.

fi,j = τ0 − τ1 (10)

From the shortened equation one can determine the worst and best case. Best
case is achieved when the task is running with other tasks for its whole execution
time. The worst case is again when the task is the only one running on the
machine.

As before t0, t1 and t2 are already running and task t3 arrives. This yields
the values f0,3 = 10−4 = 6 and f1,3 = 10−0 = 10. This time r1 has the higher
value and t3 gets scheduled on r1.

The real difference between the two cost functions can be seen when the
decision where task t4 should be scheduled has to be made. If ECTC is used
the utilization of both machines is greater or equal to 40%, so in order to run t4,

7

which requires 70% utilization, a new machine has to be powered up. Contrary
to using MaxUtil where t4 fits on r1 which utilizes only 20% of its CPU.

Evaluation ECTC and MaxUtil are compared to random Task allocations.
The test sets where built based on three different parameters. Number of tasks
(100 to 5000 in intervals of 100), mean inter-arrival time (10 to 100 in steps of
10) and resource usage patterns (random, low (mean 30%), high (mean 70%)).
Task processing times are exponential distributed and task arrival times are
based on a Poisson process.

For all tests ECTC is shown to be more efficient than MaxUtil. The high-
est energy savings can be achieved with the low resource utilization (25% for
MaxUtil and 33%for ECTC).

3.2 Virtual Machines

3.2.1 Thresholds [1]

Preconditions No assumptions on VMs or PMs are made.

Method Two Steps are needed in VM migration: First it has to be decided
if VMs need to be migrated and if so which VMs and where they have to
be migrated to. The authors suggest for the first step a threshold system.
Thresholds are straight forward solution to keep some resources reserved in
order not to run into immediate trouble once the utilization increases. In its
simplest form only one fixed threshold is sufficient. It defines an upper limit of
utilization, as long as its not violated new VMs can be allocated to the host. A
more sophisticated approach is to use two fixed thresholds as upper and lower
limit. If one of the thresholds is breached VMs need to be migrated to resolve
the situation. If too many VMs are allocated some have to migrate to different
hosts. If too few are allocated all VMs should be migrated to other hosts in
order to shut down this machine.

Dynamic thresholds open the possibility to adapt to the changing behavior
of the VMs. The utilization of one VM is assumed to be a random variable
uj , and different VMs not necessarily have the same distribution for uj . The
host utilization is the sum of all ujs of the VMs allocated to it. If the ujs are
distributed differently the host utilization can be assumed to be normal and be
modeled with the t-distribution. Based on the inverse cumulative probability
function an interval which will be reached with a low probability can be cal-
culated. This interval together with the standard deviation can be used to set
the upper threshold for each host individually. The idea is to have a higher
threshold for hosts with VMs which have a behavior that does not change often
than for hosts with VMs where the behavior changes constantly. The lower
utilization threshold is calculated as a global value across all hosts to identify
the machines where the utilization is lower than the average. As the ujs are
collected for each VM and only later summed up this data can also be used
after a VM has been migrated to allow a more accurate prediction.

To answer the question of which VMs to migrate the authors propose three
different selection policies:

• Minimization of Migrations (MM) – migrate the least number of
VMs to minimize migration overhead

8

• Highest Potential Growth (HPG) – migrate VMs that have the lowest
usage of CPU relatively to requested in order to minimize total potential
increase of the utilization and SLA violation

• Random Choice (RC) – choose the necessary number of VMs randomly

The second step in VM Migration is called VM Placement. The chosen
algorithm is a Modified Best Fit Decreasing where the modification is the con-
sideration of power usage. VMs get sorted by their CPU usage in a decreasing
order. VMs are allocated to the host where the least increase of power con-
sumption after allocation occurs. This has the effect of preferring the power
efficient hosts over less efficient ones.

Evaluation The test environment was a simulated data center with heteroge-
neous hardware. For workload data traces of real world workloads were taken.

For the dynamic thresholds several parameters were evaluated to find the
best ones. This one were compared with the single and multiple fixed thresholds
and a random algorithm. Compared to the most energy efficient method, one
of the single fixed thresholds, the dynamic thresholds have higher energy con-
sumptions but only a fraction of SLA violations. The multiple fixed threshold
methods are in the middle between the two extremes.

3.2.2 Algorithms [2]

Preconditions No assumptions on VMs or PMs are made.

Method The authors use a knowledge base that has all the information about
VMs and PMs current and past resource utilization and the Service Level Agree-
ments (SLA). This knowledge base decides, when the current (VM,PM) match-
ing does not fit anymore and recommends actions for changing. Every resource
may have its own two thresholds. Since VMs are not allocated with their SLA
but with a bit more than they currently need a rise or decay in its demand
requires a reconfiguration of the VM. If after a reconfiguration of a VM a host
has reached its limits a migration is necessary. This paper introduces several
algorithms for migration: First Fit, Monte Carlo and Vector Packing.

• First Fit: Allocation takes place in a first fit manner. For reallocation
half of the most loaded machine and all of the least loaded machine is
distributed with first fit.

• Monte Carlo: The VMs are allocated with Round Robin so they are
equally distributed. For reallocation a cost function is used to tell the
cost of the current allocation. Several alternative allocations are created
with the Monte Carlo method and the cost function is calculated for the
alternatives too. The allocation with the lowest costs will be taken. Some
parameters of the cost function are cost for migration, cost for overloaded
hosts and costs for empty hosts. Setting positive values for the first two
parameters and negative values for the last one, solutions with little mi-
gration, few overloaded hosts and high number of empty hosts will be
preferred.

9

• Vector Packing: First of all the VMs get sorted with highest resource
needs first. Then they get allocated in a First Fit manner but trying not
to imbalance the resources of the PM. Reallocation works the same way
but only the most loaded PMs are taken into account.

Since some of the PMs are getting empty after reallocation, the authors also
propose a way to power down as shown in equation 11. At every step only
a fraction of the empty PMs shall be turned off, so a sudden peak can easier
be handled. Also when there are many empty machines, they will be powered
down in an exponential manner influenced by parameter a. At least one PM
shall always run.

Number of PMs to switch off =
Number of empty PMs

a
(11)

For powering up machines again power efficient hosts are considered first.

Evaluation The test were carried out with a simulation of 100 homogeneous
physical machines. Three different workload characteristics were tested: a work-
load with little changes, a workload with medium changes and a workload based
on real data, which needed more CPU than the other workloads. For the little
workload changes and the real test set Monte Carlo is the best choice. For
medium workload changes First Fit works best. Even though Vector Packing is
never the best it is best on average of all workloads. While Monte Carlo does
deliver good results, it takes the longest to compute and does not scale well with
a higher number of VMs.

3.2.3 Decentralized VM migration [10]

Preconditions A homogeneous hardware basis, where each host is capable
of holding the same amount of same-sized VMs is assumed. The protocol can
easily be extended to handle heterogeneous hardware and VMs.

Method The authors present a decentralized approach which can cope with a
varying amount of hosts. They propose a gossiping protocol which decides how
many VMs are allocated onto a PM.

The protocol includes two threads running on each PM, one is called the
active thread the other is passive. In the following algorithms Hi is the current
amount of VMs allocated to the host i and C is the maximum capacity of a
host.

Algorithm 1 Procedure ACTIVE THREAD

1: loop
2: Wait ∆
3: for all j ε GetNeighbors(i) do
4: Send (Hi) to j
5: Receive (H ′i) from j
6: Hi ← H ′i
7: end for
8: end loop

10

The active thread sends messages to its neighbors with its current count of
virtual machines. It gets a new value from the neighbor and updates its count
with this value and continues the protocol by sending the next message to the
next neighbor.

Algorithm 2 Procedure PASSIVE THREAD

1: loop
2: Wait for message Hj from j
3: if Hi ≥ Hj then
4: D ← min(Hj , C −Hi)
5: Send (Hj −D) to j
6: Hi ← Hi +D
7: else
8: D ← min(Hi, C −Hj)
9: Send (Hj +D) to j

10: Hi ← Hi −D
11: end if
12: end loop

The passive thread on another machine listens for the messages of an active
thread. Upon arrival it needs to decide whether the count of VMs on the sending
machine needs to be in- or decreased. The idea is that the machine with the
higher number of VMs tries to gather as much VMs as possible from the other
machine. The answering machine in the passive thread updates its own VM
counter and sends the updated VM counter of the other machine back to the
requesting active thread.

This process needs to run in an endless loop. If at the end of one iteration
the host has no VMs allocated it can be put into a lower power consumption
mode.

As there is no global knowledge involved the set of neighbors is only a subset
of all machines. Therefore the active thread talks only to a few hosts. To always
have an up-to-date view of the neighborhood hosts exchange messages with their
known neighbors and merge this information with their own view.

This protocol can handle that hosts appear and disappear suddenly which is
a reasonable assumption in a cloud environment. Although the algorithms are
simple, they do not cover the decision which VMs to migrate, only the decision
on the number of VMs to migrate is made. If heterogeneous hardware and
VMs need to be handled the algorithms will become more complex as C will
not be constant but needs to be determined for each host independently and
calculating remaining VMs needs to consider different VM sizes.

Evaluation Results of this method are not analyzed in energy efficiency but
rather in how many hosts need to be powered up. Simulations are run with
different set-ups to show how the approach reacts to different situations. In a
static situation where hosts and number of VMs are not changed it is shown
that the protocol leads fast to a near optimal solution. If a bigger neighborhood
is used solutions converge faster. If the VM count is not static but varies each
time step the protocol keeps the utilization near the optimum. If the protocol
is turned off it deviates from it. In another experiment it is shown, that sudden

11

hardware outages or additions can be handled.

3.2.4 Artificial Intelligence Approach [3]

Preconditions A homogeneous hardware basis is assumed. The VMs may
vary in their needs.

Multidimensional-Bin-Packing (MDBP) The authors define the problem
as a MDBP, where the bins are hosts, the items are the VMs to be placed on
the PM and the goal is to use as few PMs as possible. A description of the
MDBP-Problem can be found in [7].

Bin packing problems involve the packing of objects of given sizes
into bins of given capacity. In the case of one-dimensional bin pack-
ing the size of each object is a real number between 0 and 1, and each
bin is of capacity one. It is required that the sum of the sizes of the
objects packed into any given bin may not exceed 1. The problem
of finding a packing using a minimum number of bins is known to
be NP-hard [...]. [7, Page 289]

This can be generalized to a multidimensional bin packing problem where limits
in each dimension must not be exceeded.

Method The authors choose an AI approach for VM migration. They pro-
pose an ant colony as model to solve the MDBP to get an optimized workload
placement.

Ants communicate through pheromones. The pheromone is emitted by an
ant and evaporates after some time. When food is searched the shortest path
has the highest concentration of pheromones because the ants on this path re-
turn faster and the pheromone therefore has less time to evaporate. Ants tend
to prefer paths with higher concentration, thus the best way to a new food
source is found after some time through indirect communication.
As for the technical implementation the authors describe the Ant Colony Opti-
mization (ACO) algorithm as

artificial ants act as multi-agent system and construct a complex
solution based on indirect low-level communication. [3, Page 27]

Each ant knows about all running VMs and all hosts. An ant allocates a VM
i on a PM v based on a probabilistic decision rule p as shown in equation 12,
which takes into account the current pheromone level τ and heuristic information
η. α and β are parameters to control the influence of heuristic and pheromone
level. Nv is the set of remaining VMs which are not yet allocated and fit on
host v.

piv :=
[τi,v]

α × [ηi,v]
β∑

u∈Nv [τu,v]
α × [ηu,v]

β
, ∀i ∈ Nv (12)

Equation 13 determines the load b of the host v as the sum of the resources
r used by the allocated VMs.

~bi,v :=
∑
i∈Bv

~ri (13)

12

The heuristic information as shown in equation 14 is necessary for the ants
to choose VMs so that the hosts are better utilized. It is the scalar value of the
inverse of the capacity ~C minus the future load.

ηi,v :=
1

|~Cv − (~bv + ~ri)|1
(14)

When all ants have found their workload placement, the pheromone level is
calculated by decreasing the old pheromone level by a factor (1−ρ) and adding
pheromones from the best ant in this round ∆τbest

i,v .

τi,v := (1− ρ)× τi,v + ∆τbest
i,v , ∀(i, Bv) ∈ I ×B (15)

Where I is the set of items and B is the set of bins.
The concentration must always lay between certain thresholds [τmin, τmax]

in order to prevent early stagnation. Termination is assured by restricting the
algorithm to a fixed amount of iterations. The output is chosen to be the global
best solution so far.

Algorithm 3 shows the complete algorithm for finding the best solution.
After the setup, lines 6 to 20 show how the mapping of VMs is done. Then the
Best solution is updated if necessary. Lines 25 to 34 show the update of the
pheromone level. This is done for a fixed number of cycles until the global best
solution is returned.

Evaluation The test were run on a simulated cluster of homogeneous hosts.
There where 600 hosts and as many VMs. The evaluation period was 24 hours.
The energy consumption was estimated as a linear function based on the CPU
utilization. The idle machines were not taken into account for the energy con-
sumption since they were assumed to be turned off. The energy consumption
were not only taken from the workload but also considered for the algorithm.
The optimal parameters were found through experimental testing. The mea-
sured values are the amount of hosts with VMs, total energy consumption and
average execution time for the algorithm. The results are compared to a simple
greedy algorithm and to an optimal solution. The proposed algorithm is near to
the optimal solution but needs more time for computation. Computation time
could be reduced with some optimization.

4 Conclusion

We have presented six different methods to reduce energy consumption in a
cloud computing environment. Each approach originates from its own applica-
tion scenario and has therefore different requirements, which makes comparing
them difficult. In addition each method used its own test sets, simulated hard-
ware and VM configurations. Some compared their solution to the optimum
others compared it to competitors or to the simplest approach like random or
greedy allocation. Most results show energy usage while some show utilization.
Furthermore some methods only approximate energy usage instead of measuring
it.

13

Algorithm 3 Energy-Aware ACO-based Workload Consolidation

1: Input: Set of items I and set of bins B with their associated resource demand
vectors ~ri and ~Cv respectively, Set of parameters

2: Output: Global best solution Sbest
3:

4: Initialize parameters, Set pheromone value on all item-bin pairs to τmax
5: for all q ∈ {0 . . . nCycles− 1} do
6: for all a ∈ {0 . . . nAnts− 1} do
7: IS := I; v := 0
8: Sa := [xi,j := 0],∀i ∈ {0, . . . ,m− 1},∀j ∈ {0, . . . , n− 1}
9: while IS 6= ∅ do

10: Nv := {i|
∑n−1
j=0 xi,j = 0 ∧~bv + ~ri ≤ ~Cv}

11: if Nv 6= ∅ then
12: Choose item i ∈ Nv stochastically according to probability piv :=

[τi,v]α×[ηi,v]β∑
u∈Nv [τu,v]α×[ηu,v]β

13: xi,v := 1
14: IS := IS − i
15: ~bv := ~bv + ~ri
16: else
17: v := v + 1
18: end if
19: end while
20: end for
21: Compare ants solutions Sa according to the objective function f → Save

cycle best solution as Scycle
22: if q = 0 ∨ IsGlobalBest(Scycle) then
23: Save cycle best solution as new global best Sbest
24: end if
25: Compute τmin and τmax
26: for all (i, Bv) ∈ I ×B do
27: τi,v := (1− ρ)× τi,v + ∆τbest

i,v

28: if τi,v > τmax then
29: τi,v := τmax
30: end if
31: if τi,v < τmin then
32: τi,v := τmin
33: end if
34: end for
35: end for
36: return Global best solution Sbest

14

Most approaches need global knowledge to work properly. We assume that in
reality in a huge data center this might be impractical. One major difference in
the VM approaches is that some need periodical checks to update the placement
while others react to changes in VM usages. A combination of both seems
useful. Reacting on changes reduces the amount of violations of service level
agreements, while periodical checks can be used to rebuild an optimal placement
which might have been destroyed by reactive actions.

We identified some possibilities for future work.
Performance aspects are almost completely ignored. On the one hand it is

understandable to focus solely on the energy part, on the other hand it would be
interesting to have an approach which considers for example placing cooperating
VMs on the same host or in the same rack. With this placement not only the
performance would be improved but also the power needed for switching the
communication between these VMs, since less switches are involved.

We think that some approaches might be possible to combine. For example
to solve the decision problem in [10] the different approaches in [1] could result
in reasonable results. The reconfiguration of VMs could be implemented in ap-
proaches which now only consider the maximum capacity of a VM, this should,
in theory, lead to even better results.

Since energy awareness in cloud computing is a relatively new topic, there
are a lot of other research possibilities.

15

References

[1] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based ap-
proach for energy-efficient consolidation of virtual machines in cloud data
centers. In Proceedings of the 8th International Workshop on Middleware
for Grids, Clouds and e-Science, MGC ’10, pages 4:1–4:6, New York, NY,
USA, 2010. ACM.

[2] Damien Borgetto, Michael Maurer, Georges Da-Costa, Jean-Marc Pierson,
and Ivona Brandic. Energy-efficient and SLA-aware management of IaaS
clouds. In Proceedings of the 3rd International Conference on Future Energy
Systems: Where Energy, Computing and Communication Meet, e-Energy
’12, pages 25:1–25:10, New York, NY, USA, 2012. ACM.

[3] Eugen Feller, Louis Rilling, and Christine Morin. Energy-Aware Ant
Colony Based Workload Placement in Clouds. In Proceedings of the 2011
IEEE/ACM 12th International Conference on Grid Computing, GRID ’11,
pages 26–33, Washington, DC, USA, 2011. IEEE Computer Society.

[4] Google Inc. The Big Picture FAQs - Google Green.
http://www.google.com/intl/en/green/bigpicture/#/intro/infographics-1,
2013-07-11.

[5] Google Inc. The Big Picture FAQs - Google Green.
http://www.google.com/intl/en/green/bigpicture/references.html, 2013-
07-11.

[6] Qingjia Huang, Sen Su, Jian Li, Peng Xu, Kai Shuang, and Xiao Huang.
Enhanced Energy-Efficient Scheduling for Parallel Applications in Cloud.
In Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), CCGRID ’12, pages
781–786, Washington, DC, USA, 2012. IEEE Computer Society.

[7] Richard M. Karp, Michael Luby, and A. Marchetti-Spaccamela. A proba-
bilistic analysis of multidimensional bin packing problems. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing, STOC
’84, pages 289–298, New York, NY, USA, 1984. ACM.

[8] YoungChoon Lee and AlbertY. Zomaya. Energy efficient utilization of
resources in cloud computing systems. The Journal of Supercomputing,
60(2):268–280.

[9] Liang Luo, Wenjun Wu, Dichen Di, Fei Zhang, Yizhou Yan, and Yaokuan
Mao. A resource scheduling algorithm of cloud computing based on energy
efficient optimization methods. In Green Computing Conference (IGCC),
2012 International, pages 1–6, 2012.

[10] M. Marzolla, O. Babaoglu, and F. Panzieri. Server consolidation in Clouds
through gossiping. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on a, pages 1–6, 2011.

16

