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Abstract. It is well known that the vertices of the convex hull of n random points, which are
chosen independently and uniformly from the interior of a convex polygon, are concentrated in the
neighbourhoods of the vertices of the polygon as n tends to infinity. Here concentration means
that the number of vertices of the convex hull outside of the neighbourhoods of the vertices of the
polygon is negligible asymptotically. The first moment of the number of vertices of the convex hull
in a neighbourhood of a vertex of the polygon was obtained in 1963 by Rényi and Sulanke in a
classical paper. The second moment was achieved in 1988 by Groeneboom using a Poisson point
process approximation technique. Due to the complexity of the occurring calculations the extension
of this technique to higher moments appears to be out of reach. Based on a purely geometric
approach, which avoids stochastic processes, we derive the moments of all orders.

Key words. Random points, convex hull, higher moments.

2010 Mathematics Subject Classification. Primary 52A22; Secondary 60D05

1 Introduction

When investigating the number of vertices of the convex hull of n points chosen indepen-
dently and uniformly from the interior of a convex polygon, it is essential to observe that
the vertices are concentrated close to the vertices of the polygon as n tends to infinity. In
order to see how the classical paper from 1963 by Rényi and Sulanke [19] reflects this
fact, it is illuminating to recall their approach.

Obviously, the number of vertices of the convex hull is identical to the number of
edges of the convex hull. Any two random points are the endpoints of an edge of the
convex hull if all remaining n− 2 random points lie on one and the same side of the line
containing the edge. As the points are identically distributed, the probability of this event
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180 Christian Buchta

is the same for any selection of two random points. Hence we are led to the question of de-
termining the probability that a line through two points is such that n − 2 random points
are on the same side. This probability is calculated for all lines, distinguishing which
edges of the given polygon a line intersects. If the occurring values are multiplied by the
number of selections of 2 points out of n, the result for two neighbouring edges, inde-
pendent of the angle between the edges and the lengths of the edges, is 2/3 log n+O(1)
as n tends to infinity. Notice the invariance under non-singular affine transformations.
The result for non-neighbouring edges is O(1) if there is one further edge between the
intersected edges and o(1) if there are two or more edges between. A second look at the
calculations shows that the value 2/3 log n + O(1) remains unchanged if instead of all
lines intersecting two neighbouring edges only those lines are considered, which intersect
the edges in an arbitrary small neighbourhood of the vertex, where the two neighbouring
edges meet.

Clearly, the probability that two random points contribute an edge to the convex hull,
multiplied by the number of selections of 2 points out of n, gives just the expected value of
the number of edges of the convex hull and, equivalently, the expected number of vertices
of the convex hull.

It does not appear promising to extend the sketched classical approach by Rényi and
Sulanke to the second moment. In spite of many efforts, cf., e.g., the work of Jewell and
Romano [15, p. 547], [16, p. 424], essentially no progress was achieved for a quarter of
a century. Then, in 1988, Groeneboom [13] came up with the idea of approximating the
process of those vertices of the convex hull of a uniform sample of random points in the
unit square with vertices (0, 0), (0, 1), (1, 0), and (1, 1), which are close to the origin
(0, 0), by the process of vertices of the “left-lower” boundary of the convex hull of a
realization of a Poisson point process on R2

+ with intensity n times Lebesgue measure.
It turns out that the variance of the number of vertices of the latter process can indeed
be calculated, even though the necessary effort is tremendous. It can then be deduced
([13, p. 328]; also cf. [7, Section 5.4]) that the variance of the number of vertices of the
convex hull of the uniform sample, which are close to the origin, is asymptotically equal
to 10/27 log n.

Considering the calculations required to derive the variance by Groeneboom’s ap-
proach, it appears to be hopeless to extend the method in order to obtain third or higher
order information.

Recalling the invariance under non-singular affine transformations, we investigate in
the present paper the number of those vertices of the convex hull of a uniform sample
of random points in the triangle given by (0, 1), (0, 0), and (1, 0), which are situated in
a neighbourhood of the origin (0, 0). These vertices can be identified in the following
way: Take a line intersecting both the positive x- and the positive y-axis, and consider
the convex hull of the two intersection points and those of the points of the sample, which
lie on the same side of the line as the origin. The influence of the position of the line on
the number of identified vertices is negligible asymptotically. The line may even be taken
through the points (0, 1) and (1, 0). (See [3]; also cf. [10].)

Therefore our task is the investigation of the random variable Nn defined as follows:
Assume that n points P1, . . . , Pn are distributed independently and uniformly in the in-
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On the boundary structure of the convex hull of random points 181

terior of the triangle with vertices (0, 1), (0, 0), and (1, 0). Consider the convex hull of
(0, 1), P1, . . . , Pn, and (1, 0). Denote byNn the number of those of the points P1, . . . , Pn,
which are vertices of the convex hull.

Based on a simple geometric idea, for the probabilities p(n)k (k = 1, . . . , n) thatNn =
k an explicit formula was obtained in [8]:

p
(n)
k = 2k

∑ i1 . . . ik
i1(i1 + 1)(i1 + i2)(i1 + i2 + 1) . . . (i1 + · · ·+ ik)(i1 + · · ·+ ik + 1)

,

where the sum is taken over all i1, . . . , ik ∈ N such that i1 + · · ·+ ik = n. (The result was
announced in [6].) The crucial point now consists in deriving formulae for the moments
of Nn, from which their asymptotic behaviour as n tends to infinity becomes apparent.

As a first step a linear second order difference equation for the m-th moment of Nn is
established (Theorem 1). Its right hand side

E(Nn−1 + 1)m − ENm
n−1 =

m−1∑
j=0

(
m

j

)
EN j

n−1

involves the moments EN j
n−1 of order j = 1, . . . ,m− 1. Once the moments up to order

m− 1 are obtained, the m-th moment follows as the solution of the difference equation.
As a second step the difference equation is dealt with. Remarkably, the coefficients in

the equation for the m-th moment do not depend on m, i.e., the homogenous equation is
the same for all moments. We solve the difference equation for any right hand side, say
g(n), thus obtaining the solution of the equation in terms of g(n). Choosing g(n) to be
E(Nn−1 + 1)m − ENm

n−1, we obtain the m-th moment of Nn in terms of the moments
of smaller order (Theorem 2).

The classical result by Rényi and Sulanke forENn now follows just by putting g(n) =
1 (Corollary 1). Then putting g(n) = 2ENn−1 + 1 yields Groeneboom’s result for
the variance (Corollary 2; also cf. [10]). The results for ENn and EN 2

n imply EN 3
n

(Corollary 3). We also state the formula for EN 4
n following from the first three moments

(Corollary 4). Continuing in this way, any further moment can be derived.
Corollaries 1 to 4 show for m = 1, 2, 3, and 4 that

ENm
n =

(
2
3
log n

)m

+O
(
logm−1 n

)
as n tends to infinity. The precise asymptotic behaviour of the weight function wk,n

occurring in Theorem 2 is finally used to prove the formula for moments of any order m
(Theorem 3).

The present definition of Nn turns out not only to be suitable to obtain the required
asymptotic formulae, but also to be exactly the right one in order to obtain explicit for-
mulae for the number of vertices of the convex hull of a fixed number of random points;
see [8, p. 248] and the announcement [9].

For more information about the convex hull of random points see in particular the
books by Mathai [17] and Schneider and Weil [23], as well as the surveys by Affen-
tranger [1], Bárány [2], Buchta [5], Gruber [14], Reitzner [18], Schneider [20], [21], [22],
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182 Christian Buchta

and Weil and Wieacker [24]. Many references are also contained in [3], [7], [11], and
[12]. Important recent results concerning the variance in the higher dimensional case are
due to Bárány and Reitzner [4].

2 Formulae for the m-th moment

Theorem 1. For any m ∈ N and any n ∈ N the m-th moment of Nn is the (unique)
solution of the second order difference equation

n(n+ 1)
2

ENm
n − (n2 − n+ 1)ENm

n−1 +
(n− 2)(n− 1)

2
ENm

n−2

= E(Nn−1 + 1)m − ENm
n−1

with initial values ENm
1 = 1 and ENm

2 = (2m + 2)/3.

Proof. We make use of the formula for the probability p(n)k (k = 1, . . . , n) that Nn = k,
which is stated in the introduction. In this formula the index ik is at least 1 and at most
n−k+1. Correspondingly, the sum of the remaining indices i1, . . . , ik−1 is at least k−1
and at most n − 1. Denoting this sum by j and arranging the formula according to the
values of j, we see that p(n)k can be broken down to p(j)k−1 (j = k − 1, . . . , n− 1):

p
(n)
k =

2
n(n+ 1)

n−1∑
j=k−1

(n− j)p(j)k−1,

where p(0)
0 = 1 and p(j)0 = 0 for j ∈ N. From

n(n+ 1)
2

p
(n)
k =

n−1∑
j=k−1

(n− j)p(j)k−1

it follows that
n(n+ 1)

2
p
(n)
k − (n− 1)n

2
p
(n−1)
k =

n−1∑
j=k−1

p
(j)
k−1

and that (
n(n+ 1)

2
p
(n)
k − (n− 1)n

2
p
(n−1)
k

)
−
(
(n− 1)n

2
p
(n−1)
k − (n− 2)(n− 1)

2
p
(n−2)
k

)
= p

(n−1)
k−1 .

The resulting identity

n(n+ 1)
2

p
(n)
k − (n− 1)np(n−1)

k +
(n− 2)(n− 1)

2
p
(n−2)
k = p

(n−1)
k−1 ,
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On the boundary structure of the convex hull of random points 183

first multiplied by km on the left hand side and by ((k − 1) + 1)m on the right hand side
(k = 1, . . . , n) and then summed up from k = 1 to k = n, yields

n(n+ 1)
2

ENm
n − (n− 1)nENm

n−1 +
(n− 2)(n− 1)

2
ENm

n−2 = E(Nn−1 + 1)m.

Hence the claimed difference equation follows immediately. Furthermore, p(1)
1 = 1 such

that ENm
1 = 1 and p(2)

1 = 2/3, p(2)
2 = 1/3 such that ENm

2 = (2m + 2)/3. 2

Theorem 2. For any m ∈ N and any n ∈ N the m-th moment of Nn is determined by the
j-th moments (j = 1, . . . ,m− 1) of Nk (k = 1, . . . , n− 1) according to the identity

ENm
n = 1 +

n−1∑
k=1

wk,n

(
E(Nk + 1)m − ENm

k

)
with weights

wk,n = 2k(k + 1)
n∑

i=k+1

1
(i2 − 1)i2

.

Proof. Noticing that in the difference equation in Theorem 1 the coefficients on the left
hand side do not depend on m, we consider the difference equation

n(n+ 1)
2

f(n)− (n2 − n+ 1)f(n− 1) +
(n− 2)(n− 1)

2
f(n− 2) = g(n),

where f(n) is the unknown function and g(n) a given right hand side. This equation can
also be written in the form

n(n+ 1)
2

(f(n)− f(n− 1))− (n− 2)(n− 1)
2

(f(n− 1)− f(n− 2)) = g(n)

and hence in the form

f(n)− f(n− 1) =
(n− 2)(n− 1)
n(n+ 1)

(f(n− 1)− f(n− 2)) +
2

n(n+ 1)
g(n).

Iteration yields

f(n)− f(n− 1) =
12

(n2 − 1)n2 (f(2)− f(1)) +
2

(n2 − 1)n2

n∑
k=3

(k − 1)k g(k).

Therefore the solution of the difference equation is given by

f(n) = f(1) +
n∑

i=2

2
(i2 − 1)i2

(
6(f(2)− f(1)) +

i∑
k=3

(k − 1)k g(k)

)
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184 Christian Buchta

Actually we have f(1) = ENm
1 = 1 and f(2)− f(1) = ENm

2 − ENm
1 = (2m − 1)/3

according to Theorem 1. Furthermore, g(2) = E(N1 + 1)m − ENm
1 = 2m − 1 since

N1 ≡ 1. Thus

ENm
n = 1 +

n∑
i=2

2
(i2 − 1)i2

i∑
k=2

(k − 1)k(E(Nk−1 + 1)m − ENm
k−1)

= 1 +
n∑

i=2

2
(i2 − 1)i2

i−1∑
k=1

k(k + 1)(E(Nk + 1)m − ENm
k )

= 1 +

n∑
k=1

2k(k + 1)(E(Nk + 1)m − ENm
k )

n∑
i=k+1

1
(i2 − 1)i2

,

as claimed. 2

Corollary 1. The first moment of Nn is given by

ENn =
2
3
Hn +

1
3
,

where Hn =
∑n

k=1
1
k .

Proof. According to Theorem 2

ENn = 1 +

n−1∑
k=1

wk,n = 1 +

n−1∑
k=1

2k(k + 1)
n∑

i=k+1

1
(i2 − 1)i2

.

Interchanging the order of summation yields

ENn = 1 + 2
n∑

i=2

1
(i2 − 1)i2

i−1∑
k=1

k(k + 1) =
2
3
Hn +

1
3
,

since
∑i−1

k=1 k(k + 1) = 1
3 (i− 1)i(i+ 1). 2

Starting with the first moment ENn = 2
3Hn+

1
3 , a repeated application of Theorem 2

yields a representation of the m-th moment in terms of generalized harmonic sums

n∑
k1=1

1
ks1

1

k1∑
k2=1

1
ks2

2
· · ·

kt−1∑
kt=1

1
kstt

,

with s1, . . . , st ∈ N, for which we introduce the notation H(s1,...,st)
n . Instead of H(1)

n

we simply write Hn. In general, the representation is not unambiguous, e.g. H(1,1)
n =

1
2H

2
n+

1
2H

(2)
n . Moreover, any generalized harmonic sum can be expressed as a polynomial
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On the boundary structure of the convex hull of random points 185

of generalized harmonic sums, which are either justHn or such that s1 ≥ 2 and s1 ≥ s2 ≥
· · · ≥ st. This is easy to see by interchanging the order of summation, e.g.

H(1,2)
n =

n∑
k1=1

1
k1

k1∑
k2=1

1
k2

2
=

n∑
k2=1

1
k2

2

n∑
k1=k2

1
k1

=
n∑

k2=1

1
k2

2

(
n∑

k1=1

1
k1
−

k2∑
k1=1

1
k1

+
1
k2

)
= HnH

(2)
n −H(2,1)

n +H(3)
n .

Clearly, the asymptotic behaviour of Hn is given by Hn = log n + O(1), whereas any
H

(s1,...,st)
n with s1 ≥ 2 tends to a constant as n tends to infinity. Therefore, the asymptotic

behaviour ofENm
n , once expressed by generalized harmonic sums of the mentioned type,

is obvious at first sight. In the subsequent corollaries we state the arising formulae for
m = 2, 3, and 4.

Corollary 2. The second moment of Nn is given by

EN 2
n =

4
9
H2

n +
22
27
Hn +

4
9
H(2)

n −
25
27

+
4
9

1
n+ 1

and the variance of Nn by

varNn =
10
27
Hn +

4
9
H(2)

n −
28
27

+
4
9

1
n+ 1

.

Proof. According to Theorem 2

EN 2
n = 1 +

n−1∑
k=1

wk,n(2ENk + 1).

From Corollary 1 we know that ENk = 2
3Hk + 1

3 . Hence

EN 2
n = 1 +

n−1∑
k=1

wk,n

(
4
3
Hk +

5
3

)
.

The proof of Corollary 1 shows that

n−1∑
k=1

wk,n =
2
3
Hn −

2
3
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Furthermore

n−1∑
k=1

wk,nHk =
n−1∑
k=1

2k(k + 1)
n∑

i=k+1

1
(i2 − 1)i2

k∑
j=1

1
j

= 2
n∑

i=2

1
(i2 − 1)i2

i−1∑
k=1

k(k + 1)
k∑

j=1

1
j

= 2
n∑

i=2

1
(i2 − 1)i2

i−1∑
j=1

1
j

i−1∑
k=j

k(k + 1)

=
2
3
H(1,1)

n − 2
9
Hn −

11
18

+
1
3

1
n+ 1

=
1
3
H2

n −
2
9
Hn +

1
3
H(2)

n −
11
18

+
1
3

1
n+ 1

.

Thus

EN 2
n =

4
9
H2

n +
22
27
Hn +

4
9
H(2)

n −
25
27

+
4
9

1
n+ 1

,

and Corollary 1 implies the stated expression for varNn. 2

Corollary 3. The third moment of Nn is given by

EN 3
n =

8
27
H3

n +
32
27
H2

n −
106
81

Hn +
8
9
HnH

(2)
n +

32
27
H(2)

n +
16
27
H(3)

n

− 16
9
H(2,1)

n +
91
81
− 8

9
1
n
Hn −

16
27

1
n+ 1

and the third cumulant of Nn by

κ3(Nn) =
14
81
Hn +

20
27
H(2)

n +
16
27
H(3)

n −
16
9
H(2,1)

n +
172
81

− 8
9

(
1
n
+

1
n+ 1

)
Hn −

28
27

1
n+ 1

.

Proof. According to Theorem 2

EN 3
n = 1 +

n−1∑
k=1

wk,n(3EN 2
k + 3ENk + 1).

Elementary calculations like the ones in the proofs of Corollaries 1 and 2 yield the stated
expression for EN 3

n. Recalling that κ3(Nn) = EN 3
n − 3EN 2

nENn + 2(ENn)
3 the

expression for κ3(Nn) follows. 2
Bereitgestellt von | Universität Salzburg (Universität Salzburg)

Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 18:21



On the boundary structure of the convex hull of random points 187

Corollary 4. The fourth moment of Nn is given by

EN 4
n =

16
81
H4

n +
112
81

H3
n −

148
243

H2
n +

32
27
H2

nH
(2)
n +

914
729

Hn +
112
27

HnH
(2)
n

+
128
81

HnH
(3)
n −

128
27

HnH
(2,1)
n − 16

9
(
H(2)

n

)2 − 148
243

H(2)
n +

224
81

H(3)
n

− 32
27
H(4)

n −
224
27

H(2,1)
n − 128

27
H(3,1)

n +
256
27

H(2,1,1)
n − 803

729

+
32
27

1
n+ 1

H2
n +

16
27

1
n
Hn +

32
27

1
n+ 1

H(2)
n +

140
243

1
n+ 1

and the fourth cumulant of Nn by

κ4(Nn) =
62
729

Hn −
64
27
(
H(2)

n

)2
+

212
243

H(2)
n +

160
81

H(3)
n −

32
27
H(4)

n −
160
27

H(2,1)
n

− 128
27

H(3,1)
n +

256
27

H(2,1,1)
n − 4724

729
+

64
27

(
1
n
+

1
n+ 1

)
H2

n

+
16
9

(
1
n
+

1
n+ 1

)
Hn +

1076
243

1
n+ 1

− 16
27

1
(n+ 1)2 .

Proof. The calculations leading to EN 4
n are analogous to the proofs of the preceding

corollaries; κ4(Nn) follows according to κ4(Nn) = EN 4
n − 4EN 3

nENn − 3(EN 2
n)

2 +
12EN 2

n(ENn)
2 − 6(ENn)

4. 2

Theorem 3. For anym ∈ N the asymptotic behaviour of them-th moment ofNn is given
by

ENm
n =

(
2
3
log n

)m

+O
(
logm−1 n

)
as n tends to infinity.

Proof. In order to derive the claimed expression from Theorem 2, we need precise infor-
mation about the asymptotic behaviour of wk,n. The required information is provided by
the formula

n∑
i=k+1

1
(i2 − 1)i2

=
r∑

p=3

(p− 2)!
p

(
p−1∏
q=0

1
k + q

−
p−1∏
q=0

1
n+ q

)

+
n∑

i=k+1

(r − 1)!
(i2 − 1)i2

r−1∏
q=2

1
i+ q

(r ≥ 2).

For r = 2 the right hand side of the formula reduces to the left hand side. For r ≥ 3 it
consists of the r − 2 summands corresponding to p = 3, . . . , r, the asymptotic behaviour
of which is obvious, and a remainder term, which has the same structure as the left hand
side, but is much smaller.
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Assume that the formula has been derived for some r ≥ 2. Replacing in the denomi-
nator of the second sum the value i2 by i(i+ r), a slightly smaller sum arises, which can
be evaluated easily:

n∑
i=k+1

(r − 1)!
(i− 1)i(i+ 1)(i+ 2) . . . (i+ r − 1)(i+ r)

= (r − 1)!
n∑

i=k+1

1
(r + 1)!

((
r+1

0

)
i− 1

−
(
r+1

1

)
i

+ · · ·+ (−1)r+1

(
r+1
r+1

)
i+ r

)

=
(r − 1)!
r + 1

(
1
r!

((
r
0

)
k
−

(
r
1

)
k + 1

+ · · ·+ (−1)r
(
r
r

)
k + r

)

− 1
r!

((
r
0

)
n
−

(
r
1

)
n+ 1

+ · · ·+ (−1)r
(
r
r

)
n+ r

))

=
(r − 1)!
r + 1

(
r∏

q=0

1
k + q

−
r∏

q=0

1
n+ q

)
.

The difference
n∑

i=k+1

(r − 1)!
(i2 − 1)i2

r−1∏
q=2

1
i+ q

−
n∑

i=k+1

(r − 1)!
(i− 1) . . . (i+ r)

is just
n∑

i=k+1

r!

(i2 − 1)i2

r∏
q=2

1
i+ q

,

proving the formula. An estimate of the remainder term is given by

0 <
n∑

i=k+1

(r − 1)!
(i2 − 1)i2

r−1∏
q=2

1
i+ q

<
n∑

i=k+1

(r − 1)!
ir+2

< (r − 1)!
∫ n

k

1
xr+2 dx =

(r − 1)!
r + 1

(
1

kr+1 −
1

nr+1

)
for 1 ≤ k ≤ n− 1 and r ≥ 3.

Corollary 1 implies Theorem 3 in the case m = 1. Assume that for m ≥ 2 Theorem 3
has been proved for the moments up to order m− 1. Then we have

E(Nk + 1)m − ENm
k =

m−1∑
j=0

(
m

j

)
EN j

k = m

(
2
3
log k

)m−1

+O
(
logm−2 k

)
as k tends to infinity. Now we apply the formula with r = 3. We immediately see that

n−1∑
k=1

2
3

1
k + 2

(
E(Nk + 1)m − ENm

k

)
=

(
2
3
log n

)m

+O
(
logm−1 n
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and that

n−1∑
k=1

2
3

k(k + 1)
n(n+ 1)(n+ 2)

(
E(Nk + 1)m − ENm

k

)
=

2
9
m

(
2
3
log n

)m−1

+O
(
logm−2 n

)
as n tends to infinity. The estimate of the remainder term yields that

n−1∑
k=1

4k(k + 1)
(
E(Nk + 1)m − ENm

k

) n∑
i=k+1

1
(i2 − 1)i2(i+ 2)

tends to a constant. 2
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