
Hot-Spot-Driven Framework
Development

Wolfgang Pree

Software Research Lab
University of Constance

D-78457 Constance, Germany
Voice: +49-7531-88-44 33; Fax: +49-7531-88-35 77

E-mail: pree@acm.org

Abstract. Most excellent object-oriented frameworks are still the product of a more or
less chaotic development process, typically carried out in the realm of research-like
settings. Overall, flexibility has to be injected into a framework in appropriate doses1.
Framework adaptation takes place at points of predefined refinement that we call hot
spots. As the quality of a framework depends directly on the appropriateness of hot
spots, hot spot identification has to become an explicit activity in the framework
development process. Means for documenting and communicating hot spots between
domain experts and software engineers become crucial.
This contribution first discusses the few essential framework construction principles, that
is, how to keep object-oriented architectures flexible for adaptations. We introduce hot
spot cards as means to capture flexibility requirements, and illustrate how to apply them
in combination with the essential framework construction principles. The presented
heuristics form a hot-spot-driven framework design process which leads to a more
systematic framework construction with fewer (re)design iterations.

Key words: framework hot spots, framework design, design patterns, frameworks,
object-oriented design, object-oriented software development, software reusability

1 Parnas (1976) discusses this issue in general, using the terms software family and commonality/

variability analysis

Hot-Spot-Driven Framework Development 2

1 Hot spots in white-box and black-box frameworks
Frameworks are well suited for domains where numerous similar applications are built
from scratch again and again. A framework defines a high-level language with which
applications within a domain are created through specialization (= adaptation).
Specialization takes place at points of predefined refinement that we call hot spots (Pree,
1995, 1996, 1997). Specialization is accomplished through (black-box) composition or
(white-box) inheritance as explained below. We consider a framework to have the quality
attribute well designed if it provides adequate hot spots for adaptations. For example,
Lewis et al. (1995) as well as many contributions in this book present various high-
quality frameworks.

Hot spots based on inheritance or interfaces
The framework attributes white-box and black-box categorize its hot spots. A framework
is neither pure black-box nor pure white-box. The term white-box framework is used
synomymously for white-box aspect of a framework. A white-box framework comprises
incomplete classes, that is, classes that contain methods without meaningful default
implementations. Class A in the sample framework class hierarchy depicted in Figure 1
illustrates this characteristic of a white-box framework. The abstract method of class A
that has to be overridden in a subclass is drawn in gray. The abstract method forms the
hot spot in this case.

. . .

B2B1

Framework
Classes

Framework
Adaptation

.

A1

A

B

A

A1

Figure 1 Sample framework class hierarchy (from Pree, 1996)

Programmers modify the behavior of white-box frameworks by applying inheritance to
override methods in subclasses of framework classes. The necessity to override methods
implies that programmers have to understand the framework’s design and
implementation, at least to a certain degree of detail.
Java interfaces represent pure abstract classes consisting only of abstract methods.
Interfaces allow the separation of class and type hierarchies. In the sample class hierarchy
in Figure 1, the abstract class A could be defined as interface. In the original design, only
instances of subclasses of A were type-compatible to A. In case of defining an interface
A, an instance of any class in the class hierachy that implements the interface is of type A.
Of course, the white-box characteristic of a framework does not change in case of using
interfaces. If no classes implement an interface in an adequate way, the programmer who

Hot-Spot-Driven Framework Development 3

adapts the framework also has to understand partially the framework’s design and
implementation.

Hot spots based on composition
Black-box frameworks offer ready-made components for adaptations. Modifications are
done by simple composition, not by tedious inheritance programming. Hot spots also
correspond to the overridden method(s), though the one who adapts the framework only
deals with the components as a whole.
In the framework class hierarchy in Figure 1, class B already has two subclasses B1 and
B2 that provide default implementations of B’s abstract method. Let us assume that the
framework components interact as depicted in Figure 2(a). (The lines in Figure 2
schematically represent the interactions between the components.) A programmer adapts
this framework, for example, by instantiating classes A1 and B2 and plugging in the
corresponding objects (see Figure 2(b)). In case of class B, the framework provides
ready-to-use subclasses; in case of class A the programmer has to subclass A first.

(a) (b)

B

A

B2

A1

Figure 2 Framework (a) before and (b) after specialization.

Remeber that available frameworks are neither pure white-box nor pure black-box
frameworks. If the framework is heavily reused, numerous specializations will suggest
which black-box defaults could be offered instead of just providing a white-box interface.
So frameworks will evolve more and more into black-box frameworks when they
mature.

2 Hook methods as elementary building blocks of hot spots
This section discusses the essential framework construction patterns which form the basis
of the hot-spot-driven framework design process (see Section 3).
Methods in a class can be categorized into socalled hook and template methods: Hook
methods can be viewed as place holders or flexible hot spots that are invoked by more
complex methods. These complex methods are usually termed template methods2 (Wirfs-
Brock et al., 1990; Gamma et al., 1995; Pree, 1995). Template methods define abstract
behavior or generic flow of control or the interaction between objects. The basic idea of
hook methods is that overriding hooks through inheritance allows changes of an object’s
behavior without having to touch the source code of the corresponding class. Figure 3

2 Template methods must not be confused with the C++ template construct, which has a completely

different meaning.

Hot-Spot-Driven Framework Development 4

exemplifies this concept which is tightly coupled to constructs in common object-oriented
languages. Method t() of class A is the template method which invokes a hook method h(),
as shown in Figure 3(a). The hook method is an abstract one and provides an empty
default implementation. In Figure 3(b) the hook method is overridden in a subclass A1.

(a) (b)

t(...)

h()

A AA1

Figure 3 (a) Template and hook methods and (b) hook overriding.

Let us define the class that contains the hook method under consideration as hook class H
and the class that contains the template method as template class T. A hook class quasi
parameterizes the template class. Note that this is a context-dependent distinction
regardless of the complexity of these two kinds of classes. As a consequence, the
essential set of flexibility construction principles can be derived from considering all
possible combinations between these two kinds of classes. As template and hook classes
can have any complexity, the construction principles discussed below scale up. So the
domain-specific semantics of template and hook classes fade out to show the clear picture
of how to achieve flexibility in frameworks.

2 . 1 Unification versus separation patterns
If the template and hook classes are unified in one class, called TH in Figure 4(a),
adaptations can only be done by inheritance. Thus adaptations require an application
restart.

(a) (b)

HTTH

Figure 4 (a) Unification and (b) separation of template and hook classes.

Separating template and hook classes is equal to (abstractly) coupling objects of these
classes so that the behavior of a T object can be modified by composition, that is, by
plugging in specific H objects.
The directed association between T and H expresses that a T object refers to an H object.
Such an association becomes necessary as a T object has to send messages to the
associated H object(s) in order to invoke the hook methods. Usually an instance variable
in T maintains such a relation. Other possibilities are global variables or temporary
relations by passing object references via method parameters. As the actual coupling
between T and H objects is an irrelevant implementation detail, this issue is not discussed
in further detail. The same is true for the semantics expressed by an association. For
example, whether the object association indicates a uses or is part of relation depends on
the specific context and need not be distinguished in the realm of these core construction
principles. Also note that T and H just represent types. So H, for example, could be a Java
interface as well.

Hot-Spot-Driven Framework Development 5

A separation of template and hook classes forms the precondition of run-time adaptations,
that is, subclasses of H are defined, instantiated and plugged into T objects while an
application is running. Gamma et al. (1995) and Pree (1996) discuss various useful
examples.

2 . 2 Recursive combination patterns
The template class can also be a descendant of the hook class (see Figure 5(a)). In the
degenerated version, template and hook classes are unified (see Figure 5(b)). T as a
subtype of H can manage another T instance. Thus these patterns are termed recursive
compositions. The recursive compositions have in common that they allow building up
directed graphs of interconnected objects. Furthermore, a certain structure of the template
methods, which is typical for these compositions, guarantees the forwarding of messages
in the object graphs.
The difference between the simple separation of template and hook classes and the more
sophisticated recursive separation is that the playground of adaptations through
composition is enlarged. Instead of simply plugging two objects together in a
straightforward manner as in the Separation pattern, whole directed graphs of objects can
be composed. The characteristics and implications are discussed in detail in Pree (1995,
1996, 1997).

(a) (b)

H

T

. . .

TH

Figure 5 Recursive combinations of template and hook classes.

2 . 3 Hooks as name designators of GoF pattern catalog entries
In this section we assume that the reader is familiar with the patterns in the pioneering
Gang-of-Four pattern catalog (Gamma et al., 1995). Numerous entries in the GoF
catalog represent small frameworks, that is, frameworks consisting of a few classes, that
apply the few essential construction patterns in various more or less domain-independent
situations. So these catalog entries are helpful when designing frameworks, as they
illustrate typical hook semantics. In general, the names of the catalog entries are closely
related to the semantic aspects that are kept flexible by hooks.

Patterns based on template-hook separation
Many of the framework-centered catalog entries rely on a separation of template and hook
classes (see Figure 4(b)). Two catalog patterns, Template Method and Bridge, describe
the Unification and Separation construction principle. The following catalog patterns rely
on the Separation pattern: Abstract Factory, Builder, Command, Interpreter, Observer,
Prototype, State and Strategy. Note that the names of these catalog patterns correspond to
the semantic aspect which is kept flexible in a particular pattern. This semantic aspect
again is reflected in the name of the particular hook method or class. For example, in the
Command pattern “when and how a request is fulfilled” (Gamma et al., 1995) represents
the hot spot semantics. The names of the hook method (Execute()) and hook class
(Command) reflect this and determine the name of the overall pattern catalog entry.

Hot-Spot-Driven Framework Development 6

Patterns based on recursive compositions
The catalog entries Composite (see Figure 5(a) with a 1: many relationship between T and
H), Decorator (see Figure 5(a) with a 1:1 relationship between T and H) and Chain-of-
Responsibility (see Figure 5(b)) correspond to the recursive template-hook combinations.

3 Hot-spot-driven development process
The pain of designing a framework is already described by Wirfs-Brock and Johnson
(1990): “Good frameworks are usually the result of many design iterations and a lot of
hard work”. So don’t expect a panacea. No framework will be ideal from the beginning.
More realistically, there should be means to reduce the number of design iterations. Thus
the term framework development expresses both the initial design and the evolution of a
framework.
As the quality of a framework is directly related to the flexibility required in a domain,
explicit identification of domain-specific hot spots can indeed help. Figure 6 gives an
overview of the hot-spot-driven framework development process, which encompasses
such a hot spot identification activity. Section 3.1 presents hot spot cards, which have
proved to be a simple yet effective means for documenting and communicating hot spots.
Below we outline the core activities in the framework development process and their
relationships.

 framework (re)design

software engineer

Y

N

framework-centered
design patterns

hot spot identification

domain expert, software engineer

hot spots
OK?

hot spot cards

framework usage

software engineer, domain expert

domain expert, software engineer

definition of a specific object model

CRC cards

specific object model

Figure 6 Hot-spot-driven development process (adapted from Pree, 1995).

Hot-Spot-Driven Framework Development 7

Definition of a specific object model
State-of-the-art object-oriented analysis and design (OOAD) methodologies support the
initial identification of objects/classes and thus a modularization of the overall software
system. For example, the Unified Method (Booch, Rumbaugh, and Jacobson, 1997)
picks out the best of Booch (1994), Rumbaugh (1991), and Jacobson (Jacobson,
Ericsson, and Jacobson, 1996; Jacobson, Griss, and Jonsson, 1997). Class-
Responsibility-Collaboration (CRC) cards (Beck and Cunningham, 1989) help in the
initial identification of objects and their associations. Wilkinson (1996) discusses the
usage of CRC cards in detail. Overall, object modeling is as challenging as any software
development. Methodologies can only provide guidelines.
Object modeling requires primarily domain-specific knowledge. Software engineers
assist domain experts in this activity. The distinction between domain expert and software
engineer is a rather hypothetical one. It should just express the kind of knowledge
needed. Of course, software engineers also have more or less deep domain knowledge.
Modeling a specific solution is already a complex and iterative activity where object
models have to be refined until they meet the domain-specific requirements. This
comprises object/class identification and probably the complete development of a specific
software system.
Before starting the framework development cycle, it would, of course, help considerably
to have already two or more object models of similar applications at hand: identifying
commonalities would be a lot easier. Unfortunately, this is typically not the case.
Note that the actual framework development process must build on top of a specific yet
mature object model.
Hot spot identification
Hot spot identification in the early phases (eg, in the realm of requirements analysis)
should become an explicit activity in the development process. There are two reasons for
this: Design patterns, presented in a catalog-like form, mix construction principles and
domain specific semantics as sketched in Section 2.3. Of course, it does not help much,
to just split the semantics out of the design patterns and leave framework designers alone
with bare-bone construction principles. Instead, these construction principles have to be
combined with the semantics of the domain for which a framework has to be developed.
Hot spot identification provides this information. The synergy effect of essential
construction principles paired with domain-specific hot spots is design patterns tailored to
the particular domain (see Section 3.1).
The principal problem of this activity is that you cannot expect to get right answers if you
do not ask the right questions. Often domain experts do not understand concepts such as
classes, objects and inheritance, not to mention design patterns and frameworks. As a
consequence, the communication between domain experts and software engineers has to
be reduced to a common denominator. Hot spot cards (see Section 3.1) are such a
communication vehicle, inspired by the few essential construction principles of
frameworks outlined in Section 2.
A reason why explicit hot spot identification helps, can be derived from the following
observations of influencing factors in real-world framework development: One seldom
has two or more similar systems at hand that can be studied regarding their
commonalities. Typically, one too specific system forms the basis of framework
development. Furthermore, commonalities should by far outweigh the flexible aspects of
a framework. If there are not significantly more standardized (= frozen) spots than hot
spots in a framework, the core benefit of framework technology, that is, having a widely
standardized architecture, diminishes. As a consequence, focusing on hot spots is less
work than trying to find commonalities.

Hot-Spot-Driven Framework Development 8

Framework (re)design
After domain experts have initially identified and documented the hot spots, software
engineers have to modify the object model in order to gain the desired hot spot flexibility.
Beginning with this activity, framework construction patterns as presented in the
previous chapter assist the software engineer. In other words, patterns describing how to
achieve more flexibility in a framework do not imply satisfactory frameworks, if software
engineers do not know where flexibility is actually required. Hot spot identification meets
the precondition to exploit the full potential of framework construction patterns.
Framework usage
A framework needs to be specialized several times, if not infinitely, in order to detect its
weaknesses, that is, inappropriate or missing hot spots. The cycle in Figure 6 expresses
the framework evolution process. Explicit hot spot identification by means of hot spot
cards and framework construction patterns can contribute to a significant reduction of the
number of iteration cycles.

3 . 1 Hot spot cards as means for capturing flexibility requirements
Domain experts can easily think in terms of software functionality, and they know how
software functions can support, for example, various business processes. As a
consequence, software engineers should try to obtain answers to the following questions
from domain experts:
• Which aspects differ from application to application in this domain? A list of hot spots

should be the result of this analysis.

• What is the desired degree of flexibility of these hot spots; that is, must the flexible
behavior be changeable at run time and/or by end users?

As asking these questions directly fails in most cases, software engineers have to abstract
from particular scenarios and look for commonalities and hot spot requirements. So
software engineers will produce hot spot cards interactively with domain experts. Section
3.2 discusses some useful hints regarding hot spot identification.

Hot spot name

general description of semantics

sketch hot spot behavior in
at least two specific situations

specify degree of flexibility:

adaptation by end user

adaptation without restart

Figure 7 Layout of a hot spot card.

A hot spot card first provides the hot spot name, a concise term describing the
functionality that should be kept flexible, and specifies the desired degree of flexibility.
Domain experts have to know that requesting run-time flexibility (adaptation without
restarting) and/or the possibility of adaptation by the end user do not come for free. So
this choice has to be made deliberately. Nevertheless, domain experts are tempted to
demand maximum flexibility. Again, software engineers have to elaborate this aspect
together with domain experts. The next section on the card summarizes the functionality.
This section should abstract from details. Finally, the functionality has to be described in
at least two specific situations so that software engineers can better grasp the differences.

Hot-Spot-Driven Framework Development 9

For example, if a framework for rental software systems is to be developed that can
easily be customized for hotels, car rental companies, and so on, a domain expert would
identify the rate calculation as a typical function hot spot in this domain. Rate calculation
in the realm of a hotel has to include the room rate, telephone calls and other extra
services. In a car rental system different aspects are relevant for rate calculation. Figure 8
shows a corresponding hot spot card.

Rate calculation

rate calculation when rental items are returned;
the calculation is based on application-specific
parameters

hotel system: calculation results from the
room rate * number of nights + telephone
calls + mini bar consumption

car rental system: calculation results from
the car type rate * number of days + probably
rate per mile * (driven miles - free miles) +
price for refilling + rate for rented extras such
as a mobile telephone.

specify degree of flexibility:

adaptation by end user

adaptation without restart

Figure 8 Sample hot spot card.

Hot spot cards and essential construction patterns
Based on flexibility requirements specified as a stack of hot spot cards, software
engineers have to transform the object model. In this step, framework-centered
construction patterns, as presented in Section 2, assist the software engineer. Below we
discuss the relationship between the information captured on hot spot cards and
framework construction patterns.
Function hot spots closely correspond to hook methods and hook classes. A hot spot
card contains information about the hot spot semantics and the desired degree of
flexibility, but not to which class/subsystem the hot spot belongs. Nevertheless, the
integration of function hot spots into the object model turns out to be quite
straightforward. The precondition of a smooth integration is the appropriate granularity of
a function hot spot. Function hot spots should correspond to methods or responsibilities.
For example, a useless hot spot description expresses that database access should be
flexible regarding a specific database.
In essence, a function hot spot with the right granularity implies that a hook method or a
group of hook methods has to be added, either unified with the class where its template
method resides or separated from it. Recall that a separation of template and hook classes
forms the precondition of run-time adaptations. Table 1 summarizes how to transform the
object model according to the flexibility information on a hot spot card.

Table 1 Transformation rules for a hot spot card.

Hot-Spot-Driven Framework Development 10

adaptation ... adaptation by end user object model transformation

with restart no additional hook method

without restart no additional hook method in
separate hook class

with restart yes additional hook method +
configuration tool

without restart yes additional hook method in
separate hook class +

configuration tool

If none of the two check boxes (adaptation without restart, adaptation by end user) is
marked, an extra hook method has to be introduced in an appropriate class. The hot spot
semantics usually suffices for finding the class and its template method for integrating the
hook. Let us take the rate calculation hot spot card as an example (see Figure 8), but
assuming that none of the boxes is checked. We also assume that an abstract class
RentalItem was added to the object model. We transform the object model according to the
hot spot card by simply adding a calcRate() method to RentalItem. The corresponding
template methods, such as printInvoice() and printOffer(), are in the same class (see Figure
9).

...

RentalItem

printOffer()

abstract

...

printInvoice()
calcRate(): float abstract{ }

...

...= calcRate();

...

Figure 9 Hook method calcRate() resulting from a function hot spot.

If adaptations of the calculation engine should be possible without application restart, the
additional hook method has to be put into a separate class. Figure 10 illustrates the object
model transformation. Thus the rate calculation behavior of rental items can be changed
by plugging in specific rate calculators.

...

...= calculator.calcRate(this);

...

calculator: RateCalculator

RentalItem

printOffer()

abstract

...

printInvoice()

...

1 1
...

RateCalculator
abstract

...

calcRate(r: RentalItem): float abstract{ }

. . .

Figure 10 Hook class RateCalculator resulting from a function hot spot.

How rate calculator objects are changed determines whether an end user should be able to
accomplish this adaptation. One possibility would be to store the information regarding

Hot-Spot-Driven Framework Development 11

the calculation engine configuration in a resource file in plain text. Reservation systems
built with the framework read this resource file on startup and when an end user requests
this action explicitly. If the configuration file can only be edited by means of a text editor,
many end users might refuse to effect such changes. On the other hand, end users could
configure this system aspect if the resource file is edited interactively in a GUI editor.
Some hot spot cards might require no additional hook methods or classes at all.
Resources and adequate editors might allow the achieving of the same flexibility as an
object model transformation. For example, if only different prices influence the rate
calculation algorithm, an elegant solution just stores this information in a resource file or
database table.
Note that “adaptation by end user” does not necessarily mean that no programming effort
is required. For example, if several rate calculators exist, chances are high that an end
user finds an adequate one. Otherwise, a specific rate calculator would have to be
implemented first.

Recursive template-hook combinations
So far, hot spot cards correspond to the unification/separation of template and hook
methods. The alert reader will observe the lack of hot spot cards that reflect the recursive
construction principles.
The design aspects covered by recursive template-hook combinations cannot be
expressed in the reduced vocabulary of hot spot cards. This vocabulary deliberately
focuses on functionality and excludes concepts such as class interface definition and
inheritance. So it is up to the software engineer to apply recursive construction principles
in order to produce a more elegant and flexible architecture.
Nevertheless, we can likely recognize many construction principles by analyzing the
object model at hand. Relationships labeled part-of, consists of, manages, owns and the
like indicate the GoF Composite pattern. If an abstract class becomes overloaded,
software engineers could opt for behavior composition through object chains: Some of
the behavior is put into separate classes so that this behavior can then be added by object
composition.
Having the characteristics of object hierarchies and collaborating objects in mind,
software engineers can intuitively detect situations where they can apply these recursive
construction principles.

3 . 2 Hints for hot spot mining
The assumption is rather naive that you have perfect domain experts at hand, that is,
those who produce numerous helpful hot spot cards just by handing out empty hot spot
cards to them. In practice, most domain experts are absolutely not accustomed to
answering questions regarding a generic solution. Below we outline ways to overcome
this obstacle.

Examine maintenance
Most software systems do not break new ground. Many software producers even
develop software exclusively in a particular domain. The cause for major development
efforts that start from scratch comes from the current system, which has become
hopelessly outdated. In most cases the current system is a legacy system, or, as Adele
Goldberg (1995) expresses it, a millstone: you want to throw it away, but you cannot as
you cannot live without.
As a consequence, companies try the development of a new system in parallel to coping
with the legacy system. This offers the chance to learn from the legacy system. If you ask

Hot-Spot-Driven Framework Development 12

domain experts and/or the software maintenance crew where most of the effort was put
into maintaining the old system, you’ll get a lot of useful flexibility requirements. These
aspects should become hot spots in the system under development. Often, a brief look at
software projects where costs became outrageous in the past, is a good starting point for
such a hot spot identification activity. Of course, those parts where flexibility is provided
in an adequate way have to be transferred from the old system to the new one.

Investigate scenarios/use cases
Use cases (Jacobson et al., 1995, 1997), also called scenarios, turned out to be an
excellent communication vehicle between domain experts and software engineers in the
realm of object-oriented software development. They can also become a source of hot
spots: take the functions incorporated in use cases one by one and ask domain experts
about the flexibility requirements. If you have numerous use cases, you’ll probably detect
commonalities. Describe the differences between these use cases in terms of hot spots.

Ask the right people
This last advice might sound too trivial. Nevertheless, try the following: judge people
regarding their abstraction capabilities. Many people get lost in a sea of details. Only a
few are gifted to see the big picture and abstract from irrelevant details. This capability
emerges in many real-life situations. Just watch and pick out these people. Such
abstraction-oriented people can help enormously in hot spot identification and thus in the
process of defining generic software architectures. So take at least some developers of the
current system who have abstraction capabilities on board of the team that develops the
new system.

4 Outlook
Above we discussed technical aspects of framework development by presenting the
essential framework design patterns and the resulting hot-spot-driven development
process. But organizational measures are at least equally important to be successful, as
framework development requires a radical departure from today’s project culture.
Goldberg and Rubin (1995) present these aspects in detail.
Overall framework development does not result in a short-term profit. On the contrary,
frameworks represent an investment that pays off in the long term. But we view
frameworks as the long-term players towards reaching the goal of developing software
with a building-block approach. Though the state of the art still needs profound
refinement, many currently existing frameworks corroborate that frameworks will be the
enabling technology in many areas of software development.
A word of advice for those who have not worked with frameworks so far: No
methodology or design technique will help avoid this painful learning process. Toy
around with some of the available large-scale frameworks and get a better understanding
of the technology by first reusing frameworks intensively before jumping into framework
development.

5 References
Beck K. and Cunningham W. (1989). A laboratory for object-oriented thinking. In Proceedings of

OOPSLA’89, New Orleans, Louisiana

Booch G. (1994). Object-Oriented Analysis and Design with Applications. Redwood City, CA:
Benjamin/Cummings

Hot-Spot-Driven Framework Development 13

Booch G., Rumbaugh J. and Jacobson I. (1997) Unified Method. Documentation Set, Santa Clara, CA:
Rational Software Corporation.

Gamma E., Helm R., Johnson R. and Vlissides J. (1995). Design Patterns—Elements of Reusable
Object-Oriented Software. Reading, Massachusetts: Addison-Wesley

Goldberg A. (1995). What Should We Learn? What Should We Teach? Keynote speech at OOPSLA’95
(Austin, Texas); video tape by University Video Communications (http://www.uvc.com),
Stanford, California

Goldberg A., Rubin K. (1995). Succeeding with Objects—Decision Frameworks for Project
Management. Reading, Massachusetts: Addison-Wesley

Jacobson I., Griss M. and Jonsson P. (1997). Software Reuse: Architecture, Process, and Organization
for Business Success. Wokingham: Addison-Wesley/ACM Press

Jacobson I., Ericsson M. and Jacobson A. (1995). The Object Advantage. Wokingham: Addison-
Wesley/ACM Press

Lewis T. et al. (1995). Object-Oriented Application Frameworks. Greenwich, CT: Manning
Publications/Prentice Hall.

Parnas D.L. (1976). On the Design and Development of Program Families. IEEE Transactions on
Software Engineering, March 1976

Pree W. (1995). Design Patterns for Object-Oriented Software Development. Reading, MA: Addison-
Wesley/ACM Press

Pree W. (1996). Framework Patterns. New York City: SIGS Books

Pree W. (1997). Komponentenbasierte Softwareentwicklung mit Frameworks. Heidelberg: dpunkt

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W. (1991). Object-Oriented Modeling and
Design. Englewood Cliffs, NJ: Prentice-Hall

Wilkinson N. (1996). Using CRC Cards—An Informal Approach to Object-Oriented Development.
Englewood Cliffs, NJ: Prentice Hall

Wirfs-Brock R. and Johnson R. (1990). Surveying Current Research in Object-Oriented Design.
Communications of the ACM, 33(9)

