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Abstract. Multi-level modeling using so-called clabjects heen proposed as

an alternative to UML for modeling domains thattiea more than one classi-
fication level. In real-world applications, howeyéris modeling formalism has

not yet become popular, because it is a challeagficiently represent large

models, and providing fast access to all infornratspread across the meta-
levels at the same time. In this paper we presentrtodel representation con-
cept that relies on a permanent condensed vieteofriodel, the corresponding
traversal algorithms, and their implementations praved adequate for model-
driven engineering of industrial automation systemossisting of hundreds of

thousands of model elements.
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1 Introduction

For the development of software intensive systeanwjel-driven engineering (MDE)
is a promising approach for handling their inhemplexity. For real-world appli-
cations, MDE requires adequate means for descritiagystem’s essential proper-
ties. In particular for domains that feature mdnant one classification-level, also
known as meta-level, prominent modeling languaged @s UML [1] fall short and
workarounds are required [2]. Multi-level modelirag, an alternative to UML, is able
to handle multiple domain meta-levels within a onifi framework [3]. Advantages
of such a modeling approach have been shown byales@ntributions [2, 4, 5].

In real-world applications, however, multi-level dading has been barely applied.
Major hurdles for adopting a multi-level formalisare the lack of (1) available mod-
eling environments that allow rapid prototyping) (8al-world applications that cor-
roborate the benefits of multi-level modeling, a8l efficient implementations that
are capable of handling large models. This papeudes on (3) and briefly touches
(2). Examples of (1) are described e.g. by Gutedl. [4].

We have applied multi-level modeling for automatigystems in the domain of
combustion engine development. There we use MDgetterate configuration pa-
rameters for the automation system. As it turnetlioypractice, the classification
hierarchy supported by multi-level modeling is ¢alidor building and maintaining
concise models. For the model transformations anerid-user views, however, it is
often necessary to have a “condensed” view sudhfoha certain model element all
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structural properties are easily accessible, ratha&n having to traverse the whole
meta-level hierarchy to collect that informationh&f makes matters even more com-
plicated is that this condensed view in practiceasonly used for read access, but is
also modified. This implies that a method is neeftedransparently mapping modi-
fication operations on the condensed view to thsesification hierarchy.

This paper shows how to efficiently store and tragea multi-level model, which
is also capable of handling modification operatiofegether with an efficient repre-
sentation, we are able to provide a permanent cwedeview of the model, which
turned out to be the preferred access method fiHusers. Since our models typically
are large, that is, in the order of hundreds ofifamds of model elements, we validate
our performance goals by using sufficiently largst tmodels.

In the following we present the basics of multidemnodels in our domain and key
requirements for their representation and retriewé then describe our representa-
tion method and a traversal algorithm. Finally,evaluate our implementation.

2 Multi-Level M odeling with Clabjects

Automation systems in our domain are inherently pi@x for various reasons. They
are usually built individually and comprise a largember of ready made parts, which
are often customized. They also integrate sophigttt measurement devices that are
software intensive systems by themselves. In thigian we briefly describe the
multi-level modeling approach that was employeddpe with that complexity [5].

Multi-level modeling is an alternative approachcmnventional modeling that is
able to overcome the limited support for modeliogndin metalevels. The basic idea
of multi-level modeling is to explicitly represetite different abstraction levels of
model elements. Assume, for example, that we haveaddel concrete combustion
engines, but also families of combustion enginemfdifferent vendors that specify
the properties of the individual engines, in UMlor@eptually, engine is an instantia-
tion of its family. Since instantiation is not ditly supported at the M1 layer [1],
workarounds such as the type-object pattern angnes)[2].

Different flavors of multi-level modeling have beproposed as solutions. Atkin-
son and Kihne, for example, propose a uniform nadicclassesandobjects known
as aclabject[2], that allows for an arbitrary number of cldigsition levels; its advan-
tages are well documented [3, 2, 4]. In principlelabject is a modeling entity that
has a so-calletype facetas well as ainstance facetlt thus can be an instance of a
clabject from a higher level, and at the same finoan be the type for another clab-
ject instance at a lower level. Figure 1 showsdladject model of our combustion
engine example. The notation used here is simoléinat of the original clabject con-
cept, that is, a combination of UML notations fdasses and objects [2, 6]. Each
model element has a compartment for the name, aodhdined compartment for the
type facet and the instance facet. The arrows lmtwke levels represent the “in-
stance of” relationship. At the domain metatypeelethe types Engine, Diesel En-
gine and Otto Engine are modeled like a conventiolass hierarchy. Theffields
which are the equivalent of attributes in multidgémodeling [2], such as Inertia and
Preheat_Time, are part of the corresponding clébjepe facet.
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Fig. 1. Clabject-based engine model

Specified at the domain type level, the clabjectypd is an instance of Diesel En-
gine. It provides values for the fields Max_Sperd Rreheat_Time, which are part of
DType’s instance facet, and introduced a new fEE@U_Version, which is part of
DType’s type facet. The domain instance D1 in tmstantiates DType and provides
values for Inertia and ECU_Version. Note that Dtijise facet is empty. By defini-
tion, the clabjects at the top-level only have getyacet, whereas the clabjects at the
bottom level only have an instance facet.

3 Model Representation and Traversal Requirements

Analyzing the intended uses of our models, we dantify a number of requirements
and assumptions regarding the usage of the modelssgpected performance and
space requirements. This guides the design anceimepitation of the actual internal
representation as well as the traversal algorithms.

(1) Large models. Due to the inherent complexity of the domain, wpest the mod-
els to be large, that is, consisting of more th@d,a00 elements. This implies that we
have to be able to represent models of considesit#ein a memory-efficient way.

(1) Structural similarity. Automation systems in our domain typically are alsu
built individually of ready made parts, which ariea customized. A substantial
amount of these ready made parts, however, havitasistructural information and
share the same field values. For example, mostdeatyre sensors are of the same
type and thus the internal structure of their medsl equivalent, except for some
customization such as an additional plug. As ammgte, consider figure 2.

’ Engine ‘ ’ TSensor | ’ Engine‘ ’ TSensor

7~ ~ PlugB |! ~ PlugB
e @[T m-m (T T [Puah | [ Puse|
| ! 1o

ez o2 | @ | { ez {12 o [Pugc]

€— Composition -~ Instantiation

Fig. 2. Multiple usage of sensor type: (a) unmodified,With modification
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Here the sensor type TSensor is instantiated nheitimes. In case (a) the sensor type
TSensor is used within the context of both, engifieas clabject T1, and engine E2 as
clabject T2. In case (b) the sensor type TSensostantiated twice, but with a modi-
fication: in T2’ the element PlugC is added. Thstref the information modeled in
TSensor, i.e. the containment of PlugA and PlugBhé same for both instances.

(1) Model traversal. The prospective users of models are either the umadls,
building or exploring the model in a graphical usgerface, or the model transforma-
tion system, analyzing the model and applying fiamnsations. In both cases, the
main method for accessing model elements is throwaylersal, starting at the root of
the containment hierarchy, and visiting connected eontained model elements. In
contrast to random access, one does not accesarmmhimodel elements directly. So
in our example in figure 2 (b) PlugC is not accdsdeectly, but only by navigating
from E2’ to T2’ and then to PlugC.

We can distinguish two different ways of traversmgnodel: First, we can follow
the connectorswhich are the equivalent of associations in relel modeling [2];
for our example this corresponds to navigating fie&i via T2’ to PlugC. Second,
we can follow the instantiation and the generaliratrelationships; for the same
example, this corresponds to navigating from E2Etmine or from T2’ to TSensor.
Both traversals reveal essential information. Siftcesome uses, such as the model
transformation, the complete model has to be tssekrit is crucial that the traversal
of large models can be done in a reasonable anodtinte.

(IV) Condensed traversal. The model transformation, for example, focuseshm
structure of a particular model element. It does matter whether the structure is
modeled at a certain model element itself, or wéreth received via inheritance or
instantiation. In other words, this requires a ¢éraal by following the connectors, but
also by incorporating the connectors that are nistted or inherited. For users per-
forming this kind of “mixed” traversal, i.e. follamg connectors and also the instan-
tiation and inheritance relationships, it is neaegso transparently “flatten” the clas-
sification hierarchy during traversal to provideandensed viewn the model.

As an example, consider the model shown in figufa)2When the model trans-
formation performs a condensed traversal, the inétion that both engines E1 and
E2 use the same definition of TSensor is not relewA/hat is relevant is the fact that
both engines have a sensor with two plugs. Sohmtodel transformation, all struc-
tural information modeled in TSensor appears éswhs modeled directly in E1 and
E2. In the end, the result of the traversal lodks éach engine defines its own sensor,
as shown in figure 3 (a) and (b).

| |

(Piuga ] | (Piuga ] |

£ ] ala [Piugs ||
[¢] i [¢] i

Fig. 3. Transparent traversal result: (a) starting at(BjLstarting at E2, and (c) starting at E2’

When we traverse the model starting at E1 we getafisociated clabject T1, and in
turn the clabjects associated with T1, i.e. Plugil ®lugB. Starting the traversal at
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E2 yields an analogous result. Note that althougthé model PlugA only appears
within the definition of TSensor, in the overalhtersal result the same plug appears
twice: within E1, and within E2. In both occurenchewever, PlugA represents dif-
ferent real-world elements and thus actually hdfemint identities, stemming from
the semantics of the composition aggregation. Tifi@mation about the classifica-
tion, however, is not lost but available on requesteach model element. For the
elements T1 and T2, for example, it is possibleetaeve their types, i.e. TSensor.
For both appearances of PlugA the retrieved typlead?lugA contained in TSensor.

For the case when the instantiation of TSensocésmpanied by a modification,
as presented in figure 2 (b), we get the traveesllt as shown in figure 3 (a) and (c).
Again, starting the traversal at E1 yields the saeseilt as described above. Starting
the traversal at E2’, however, yields a differeasult: First we get the associated
clabject T2’, and in turn the associated clabj&itgA, PlugB, and PlugC. Note that
PlugC appears in the traversal result in the sameas PlugA and PlugB do.

The algorithms necessary for condensed travergal&d,cof course, be imple-
mented by the model transformation itself. It tumg, however, that this kind of
traversal is also required by our user interfaoehs modeling environment supports
condensed traversal as the default.

(V) Modifiabletraversal result. When a user traverses the model, the traversdt resu
has to be modifiable, independent of the kind efé¢rsal performed. While this is
straightforward for the traversals following eitheonnectors, or instantiation and
inheritance, it is more difficult for the condensedversal method. Assume, for ex-
ample, that a user traverses the model shown indig (a), which leads to the con-
densed traversal result show in figure 3 (a) andRbrther assume that the user adds
a plug named PlugC to T2. Performing this operatiorthe traversal result implies
that the modeling environment has to store thesdifice between the original ele-
ment, which is TSensor, and its modified usagectvig T2. The expected effect on
the traversal result is that the plug is retrieegditionally to the plugs already de-
fined in the original sensor, which is exactly what have already seen in figure 3
(c). Technically this requires determining the ilveal classification level and adding
the modified elements there, such that we get théetras shown in figure 2 (b).

4 Implementation

The goals for moderate memory consumption (I) asatigraversal performance (l11)
are contradicting, as keeping hundreds of thousahuglividual elements in memory
does not scale. So we have to trade memory foettsal speed. It turns out that the
structural similarity in real-models (Il) is a prenpy that can be used to save memory,
since we have to store structural information amige and reference that information
when similar structures are modeled. For traversivegy model in order to get the
condensed view (IV), however, the saved memoryigspome performance penalty
since we have to reconstruct the structure of hjeta from the instantiation and
inheritance relationships. Since the elementsenstd by the traversal have to be
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modifiable (V), we must add certain information lsubat the link between the classi-
fication hierarchy and the condensed view doegyabtost, as shown in the sequel.

4.1 Language Representation

The modeling environment has to provide the languagdels are built of. As such it
must be capable of representing arbitrary modetslahelements, their fields, and
relationships between them. Furthermore, multipbsdification levels have to be
supported, so means for expressing instantiatiesh gameralization have to be pro-
vided. The basic entities of our modeling languageClabject, Connector, Field, and
Data Type; they are shown in figure 4.

refines [  Clabject Data Type
source ' target Ns

Fig. 4. Representation of language elements

The elements Clabject, Field and Connector arec#ydbr clabject-based modeling
languages [7]. What is unique by our solution it e representation uses one sin-
glerefinesrelationship to represent both, instantiation afl as inheritance, for clab-
jects and connectors. We denote an element thia isource of a refinement relation-
ship, i.e. a type or a generalization,refined clabjectand the target of a refinement
relationship, i.e. an instance or a specializatesefining clabject By using this
single relationship we do not claim that the sefeardf instantiation and inheritance
are similar [8]. For the sole purpose of represgntarge models in memory and
traversing them, however, a uniform treatment iseffieial, as we will see.

4.2 Permanent Condensed View

It is important to note that the language as dbedriabove is the interface of the
modeling environment, i.e. model elements are sgmed as clabjects, connectors,
and fields. Due to the traversal requirements dbned earlier, we know that con-

densed traversal is the primary access method. ifhusr implementation condensed
traversal is not just another way of exploring thedel, but it is built in as foundation

of the modeling environment. Its realization, hoeewvequires some optimized data
structures to be able to provide the condensed wigthin reasonable bounds of run-

time and memory consumption. This, however, caidden from the users of the

modeling environment.

4.3 Traversal of Refinementswithout M odifications

The simplest case of refinement (remember, théstier instantiation or inheritance)
is refining an element without adding any additioimdormation, neither additional
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structural information, nor any values for fieldm example of non-modifying re-
finement is shown in figure 2 (a).

Let C be the set of all clabjects argl1C be a refining clabject that refineg1C,
which in turn refinex,JC, etc., such that we get the sequence of refiradenhts X;,

X2, -y %), Wherex,[OC is an element that is not refined from any othement. Since
neither inheritance nor instantiation allows ciesitly, n denotes the depth of the
refinement path and is a finite integer witte 0. Further letR be the mapping of a
clabject to the sequence of refined elements R{g)= (X¢, Xo, .., Xy).

The basic scheme for the traversal is to visitdlabject at the root of the contain-
ment hierarchy, all its contained clabjects, andssquently all clabjects in the re-
finement path. For compositions of refined clalgeate have to take special care
since the contained elements can appear severas fimthe traversal result. An ex-
ample is the double occurrence of PlugA in figur@Band (b). The identity of these
elements is not only defined by their refined eletmdut also by the “context” in
which they appear. Since the refinement depth eagrbater than one, the context is
given by the sequence of refining elements. Inrggd (a) the context for PlugA is
given by the sequend&1l), in figure 3 (b) the context is given by the seweegT2).

Since such clabjects actually do not exist, bueappnly in the traversal result, we
call them *“virtual” clabjects. Virtual clabjectseatemporarily represented by light-
weight placeholder objects that are created orflthduring traversal. The garbage
collector can dispose of them after the traversal tinished. We get the following
algorithm for determining the condensed traversal:

traverseClabject(x, cty performs a condensed traversal for the clabjestith con-
text ctx, which is a list of clabjects, by visiting the lgjact itself and then subse-
qguently all clabjects along the refinement hiergrdRor a non-refining clabject the
contextctx is the empty list. Thadd..—calls denote that a node in the traversal is
reached and that it should be added to the traversalt. The symbolb denotes
recursion.
1. Visit the clabject; note that for virtual clabjethe context defines its identity:

a) addClabject(x, ctx).
2. Visit fields, including that of refined clabjects:

a) [field all getFields(x):

b)  addField (a).
3. Visit contained clabjects, including that of refihelabjects:

a) [ (connector r, context &) getCompositions(x, ctx):

b) addConnector(r).

c) U traverseClabject(r.target, c).

getFields(x) collects all fields of clabjeck by following the refinement path. The
result is a list of fields. The symbol || denotesaatenation of lists.
1. lterate over the refinement path, including x,italffields of refined clabjects.

a) O clabject g0 x||R(X) :

b) set result& result || g. Fields.

getCompositions(x, ct¥ collects all compositions of clabjectwith contextctx along
the refinement path. Returns a list of pairs ofdbmposition and the context.



8 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

1. lterate over the refinement path, including x,itmlfcompositions.
a) [ clabject g0 x||R(x) :
b) O connector r, r.source g 0 r.kind = Composition
Add the composition to the result; remember thatabntext of a refined clabject is
the sequence of the refining clabjects in the cunmefinement path:
c) set result& result || (r, cxt || R(x).firstUntil(q)).
(The list returnedby firstUntil(q) does not includg, and is empty i§0R(x).)

4.4 Modification and M aterialization

The second case of refinement occurs when a rgfigi@ment adds further informa-
tion. The example of figure 2 (b) shows that thinneg element T2’ adds a plug to

the structure of the refined clabject TSensor. Bsgmting this case is straightforward
since all the information about the modificationlésated at the refining element.
More complicated is the situation where the infaioraabout the modification is not

located in the refining element. Consider the eXaropfigure 5.

[ Engine] l TSensor

; <

|

[er ] i

|

@ J
€ —Composition — Association -- Instantiation 177 Virtual clabject

Fig. 5. Engine with two sensors: (a) model and (b) coneénéew

The left hand side (a) shows the model of an enBih¢hat contains two instances of
TSensor, namely T1 and T2. The right hand sideslflovs the condensed view con-
taining the virtual clabjects for both sensors. Naggume that we want to connect
PlugA of T1 with PlugB of T2. Since neither of teesvo plugs exists as a clabject,
i.e. both are virtual clabjects in the condensedwiwe have to transparently create
some sort oproxy elements that can be endpoints of connectors. aN¢his process
“materialization”, and figure 6 shows how it works.

[ Engine ] [ TSensor }0 T ] [E1 @ T &——F———__
T i [PlugA| [PlugB] |
! 7 [
[ E1 ] - [Puga” L
| e D M,
(@ T2 [ PlugB’| | () | PlugA
€— Composition — Association -~ Instantiation Modification 1~ 7 Virtual clabj. IMaterialized clabj.

Fig. 6. Materialization: (a) model and (b) condensed view

In order to be able to connect the two plugs, wet fiave to create the materialized
representation of the corresponding virtual claisjeas shown on the left hand side
(a): PlugA of T1 is materialized as PlugA’, and gBuof T2 is materialized as

PlugB’. Now PlugA’ and PlugB’ are instances of t@responding plugs of TSensor.
Thus during materialization we create refinementese refinements, however, until
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now do not contain any information except theimniity, so they do not use much
memory. After materialization, we can create a emtor between PlugA’ and

PlugB'. In the condensed view, as shown on thet iigimd side (b), we then also get
the condensed view of both materialized clabjects.

A materialized clabject, similar to a virtual clabj, only needs to keep track of the
refined clabject and the context, which is a listeferences to other clabjects, to be
uniquely identifiable. In addition, it only storéise difference information to the re-
fined clabject, so a materialized clabject alsa lightweight element.

4.5 Traversal of Refinementswith M odifications

Traversing a model with simple modifications, iadditional contained elements
directly at a refining clabject, is similar to terging a model without modifications,
but we also have to follow the additional compasi§i. It is easy to see thaaverse-
Clabject can already handle this case.

For refinements with materialized clabjects, aswshin figure 6, a materialized
clabject is reached indirectly by traversing itfimed clabject since we follow only
compositions. Consider the traversal order E1, TBensor, and PlugA. Our algo-
rithm fails here since we expect to have PlugAtha traversal result, and not PlugA.
To resolve that situation, we have to follow thénrement relationship in the reverse
direction, since then we can transparently skimRlin the traversal and instead visit
PlugA'. To prevent an exhaustive search for deteimgj the inverse of the refinement
relationship, we use a dictionampap that maps the refined elements to the refining
elements. This map includes the elements that epéicted by the “Modification”-
relationship in the figure. In our implementaticach clabject stores its owmap, so
we get the following traversal algorithm:

traverseM aterializedClabject(x, ct® performs a condensed traversal for the clabject
x with contexictx, can handle clabjects as well as materializedjetad
1. Visit the clabject; note that for virtual clabje¢t® context defines its identity:
a) addClabject(x, ctx).
2. Visit fields, including that of refined clabjects:
a) [ field all getFields(x):
b)  addField (a).
3. Visit contained clabjects, including that of refihelabjects:
a) 0O (connector r, clabject y, context @)getMaterializedCompositions(x, ctx):
b) addConnector(r).
c) U traverseMaterializedClabject(y, c).

getM aterializedCompositions(x, ct® collects all compositions of clabjeat with
contextctx. Returns a list of triples with: composition, tatglabject, and context.
1. lterate over the refinement path, including x,itmfcompositions:

a) O clabject g0 x || R(x):

b) rmaps< rmaps || g.rmap. (qg.rmapretrieves themap of clabjectq)

c) O connector r, r.source g Or.kind= Composition:

When there is a materialized clabject for the thngée that instead of the target:
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d) if Om, mO rmaps: m.contains(r.target) then

e) set result& result || (r, m.get(r.target), cxt || R(x).firsttkiq)).
f) else

Q) set result& result || (r, r.target, cxt || R(x).firstUntil(gp)

Traversing Non-Composition Connectors. Until now we have only considered
compositions for traversal. For implementing thadiion getConnectors(x, ctthat
retrieves all connectors for a given clabject, vewehto distinguish several cases.
Consider figure 7.

[Engine| [TSensor —5— d } d
T ! [PlugA |-°—{ PlugB | |
| 7~ ~__
1 ! I | |
[(E1 2 ™ | i . [Plugh”] [Plugh’] !
ol ol -1 {12 et
(a) T2 [ PlugB” ! (®  —  !PlugA
@— Composition — Association - - Instantiation Moadification 1~ 7 Virtual clabj. ] Materialized clabj.

Fig. 7. Connectors and materialization: (a) model and dbpensed view

Following the connectag in analogous to following compositions suelandb. For
following direct connectors between materializeab@cts, such &swe also have all
information that we need. For following indirectneectors, i.e. connectors that stem
from refined elements, between materialized clabjeach a® in the context of T1,
additional information is required. Assume thatidgrtraversal we are at PlugA'.
Following the refinement leads to PlugA, in turngoand further to PlugB. Now,
however, we cannot resolve to PlugB’. Having theap of T1 enables us to resolve
that materialization, and in the general case wee lta use the whole context for
resolution. Thus the context becomes an essergitlop every materialized clabject.
A similar case is following an indirect connectoorf a virtual clabject to a material-
ized clabject, such asin the context to T2. Here we also need to resthieamaterial-
ized clabject by inspecting the context. Sincewdriclabjects cannot have direct con-
nectors (they must be materialized first), we hawdurther cases to consider.

Connector Refinement. Besides refining clabjects, also connectors camefiaed.
Handling these refinements requires resolving #imed connectors when we visit a
connector during a traversal step. Analogouslhefming clabjects, this only requires
that we store the reverse refinement informatiahatcorresponding clabjectsiap.

Field Refinement. Refining clabjects is not done as an end in itdalit typically is
used to either provide field values in case ofratantiation, or to add new fields in
case of a specialization. Thus the refinementiogiahip between two clabjects also
relates their fields. Consider, for example, figdteLet TSensor declare the field
Range. The instantiation of TSensor as T1 demdradsie provide a range, e.g. from
0 to 100. Thus we can say that the field Rangelofefines the field Range of TSen-
sor. ExtendingyetFieldsof our traversal algorithm is similar to extendiggtCompo-
sitionsto getMaterializedCompositions
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Refinement Path. The presentation of the algorithms above usedfihetion R,
mapping a clabject to the sequence of refined aiésnén our actual implementation
we do not maintain a global map, but rather at edahject and materialized clabject
we store a reference to the refined clabject dwiile this is beneficial for the per-
formance, it is also necessary for the self-comthistorage of the model parts, e.g. for
building libraries of model elements. This, howevemut of scope for this paper.

4.6 Modifying the Condensed View

Since the condensed view is permanently availableur environment, we have to
ensure that for any element that is visited viadrsal, modification is possible.
Modification for clabjects and materialized claltfeds straightforward, since these
are exactly the places where we store the modificabformation. For modification
of virtual clabjects, we first have to materialiteem. Since for each virtual clabject
the context is known, we already have all informatthat is needed to create the
materialized clabject. So with our representatianhave ensured that modifying the
condensed view is possible, and moreover, thatloobl information is required.

5 Performance Evaluation

In order to demonstrate the feasibility of the intd representation and the traversal
algorithm presented in the previous section, wefopmed measurements on test
data! We decided to use perfect n-ary trees in our .téstsrmally, a perfect n-ary
tree is a tree where all leaf nodes are at the sipth and each inner node, i.e. non-
leaf node, has exactly n children. This decisiomge such trees is based on the fact
that we wanted to have (a) test structures of wargize, with (b) varying refinement
depth. Furthermore, (c) the implementation of thedensed view does not depend on
associations between model elements. In additien(dy want to use the same kind
of test data for evaluating future extensions efldnguage. In our particular case, we
usedm trees, where each was a perfect quaternary trdepihd. This test data con-
struction simulates the existence roftop-level nodes in the model. The choice for
guaternary trees is backed by the informal analysiseveral models created with an
earlier prototypical version of the modeling enwimpent. Our tests usa = 3 andd
ranging from five to nine, resulting in 4,095 t®48,575 clabjects.

Tests are performed for two principal cases: @@drwithout clabject refinement,
and (b) trees where clabjects are refined to retrsetural information. In case (a), all
clabjects are individually created. Thus in theséraal we do not encounter any vir-
tual clabjects. In case (b), the structure of theest one or two levels is reused. If
one level is reused, a clabject containing n leasveseated upfront. This is then re-
used for all clabjects at level— 1. These clabjects thus contairvirtual clabjects

1 All measurements were performed on a Dell Precisitt5 Mobile Workstation, equipped
with an Intel® Cor&"2 CPU operating at 2GHz and with 2 GB of main memand run-
ning Windows XP Professional. The runtime environme&as Microsoft .NET 3.0. Tests
were executed as individual processes to prevdateffects of e.g. the garbage collector.
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each. In a subsequent test, we materialize theon faritraversal. Figure 8 shows the
structure for both cases.
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€— Composition - Instantiation =7 Virtual clabject [JMaterialized clabject

Fig. 8. Test data used for the measurements

The example on the left hand side represents @sa binary tree consisting of indi-
vidually created elements. The example on the rigird side represents case (b):
clabjectA is created upfront, and is refined multiple tiniesthe tree, resulting in
virtual cjabjects as e.g. containedAh These virtual clabjects can be materialized,
e.g. simply by renaming them to “x” and “y".

If two levels are reused, a similar element is tm@aipfront, but containing clab-
jects which in turn refine from a clabject contamh leaves. While in principle it is
possible to create even deeper reuse-hierarchiesestricted the reuse depth in our
test cases since we think this is a realistic nreafsu real world models.

5.1 Traversal Performance

As outlined in section 3, the model transformatiode is one of the use cases for our
models. In order to verify the feasibility of ouodeling approach with respect to the
performance requirements, we performed traversab tef the whole model. Tra-
versal is done recursively on the condensed viepthdfirst, without performing any
additional code besides book-keeping, such as tmutite number of visited clab-
jects. The time is measured using .Net’s builBystem.Stopwatatiass. Case (a), i.e.
a model without reuse, is taken as baseline. TsaV¢imes for case (b), i.e. the mod-
els with element reuse, are expected to be sligiier, since according to the im-
plementation described in section 4, the travéraalto create virtual leaf elements on
the fly for each reused element. Traversal alsoth&gep track of the context infor-
mation. Table 1 shows the corresponding measurerasauits.

Table 1. Model traversal performance

Iteration Time [s]
No Refining Clabjects at
Number | Clabject 1 Level 2 Levels

Tree of Refine- Virtual Materialized Virtual Materialized
Depth Clabjects ment

5 4,095 0.02 0.02 0.02 0.03 0.02

6 16,393 0.05 0.06 0.06 0.08 0.07

7 65,535 0.14 0.24 0.24 0.31 0.29

8 262,143 0.53 0.92 0.93 1.19 1.12

9 1,048,575 2.15 3.53 3.65 4.74 4.54
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Somewhat unexpected, traversing the tree withalitlabjects is roughly equally fast
as traversing the tree with materialized clabje@® interpret the result in that it
shows that the dynamic creation of virtual clabjatthe fly is fast, while maintain-
ing the context for virtual and materialized clalbgeis an overhead. The time used for
visiting one individual clabject does not increasith growing model size. More
important, the numbers also show that our reuseoaph is reasonable fast, both for
interactive use at modeling time, where only srpalits are traversed, and for use by
the model transformation.

5.2 Memory Consumption

Besides traversal performance, memory consumpfitimeamodels is one of our main
requirements. Another series of tests was thusopedd, measuring the impact of
creating models on the total memory used by thege® Memory consumption is
measured by using .Net’s built lBystem.GarbageCollectalass before and after
creating the model. The measured numbers thussepiréhe net size of the models.
Case (a) again is the baseline. Models of casaré)kexpected to consume signifi-
cantly less memory than in case (a), since accgrtirthe implementation described
in section 4, virtual clabjects require no memoxgept for the context information,

and even materialized clabjects need to represepntimcremental information. Table

2 shows the corresponding measurement results.

Models for case (a), i.e. without reuse, requignidicant amounts of memory. In
our example, up to 868.28 MB are necessary evea foodel containing only simple
clabjects with basic fields such as a name. Inresiht models for case (b), which
reuse clabjects, require significantly less memé&ir. elements with one reuse-level,
all leaves of the tree are virtual clabjects andhdbrequire memory except for the
context information. As expected, e.g. the treadepth 9 with virtual clabjects as
leaves, requires about the same amount of memotheasimilar tree of depth 8,
consisting of individually created clabject onlyn@logously, the tree of depth 9 with
two levels of reuse requires about the same amafumemory as the similar tree of
depth 7 without reuse.

Table 2. Model memory consumption

Memory Consumption [MB]
Number No Refining Clabjects at

Tree of Clabject 1 Level 2 Levels

Depth Clabjects | Refinement Virtual Materialized Virtual Materialized
5 4,095 3.37 0.85 1.90 0.22 1.67
6 16,393 13.23 3.42 7.31 0.85 6.36
7 65,535 53.54 13.42 29.52 3.42 25.78
8 262,143 215.01 54.30 119.26 13.43 103.23
9 1,048,575 868.28 218.02 478.94 54.30 415.23

The measurement was also performed wladrevirtual clabjects were materialized
and thus exist as objects in memory. The memorguwoption is still significantly



14  Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

lower than for the models containing individuallseated clabjects. In real world
models, however, we expect only a fraction of thitual clabjects to be materialized,
so this additional memory consumption is expectetld negligible. While memory
consumption for models without reuseproblematic, we can see that our reuse ap-
proach keeps the memory consumption within pralstéchounds.

6 Reated Work

Handling of large models is a common requirementttie application of modeling
environments in practice. The definition of “larg&bwever, actually depends on the
kind of models and on the subject domain. A natli@der case is a model that
barely fits into main memory. For the Eclipse MadglFramework [9], for example,
this problem also arises and is solved by dynatyidahding and unloading model
parts, transparently performed by the persisteagerl [10]. EMF or MOF-based
modeling approaches [11], however, do not suppaitifievel modeling with clab-
jects. In our implementation, we could exploit th@perty of structural similarity,
which allows incorporating the space-efficient egantation right at the implementa-
tion of modeling elements, so we can representicsefiitly large models without
reaching memory limits.

The idea of unifying classes and objects has afi@wition in object-oriented pro-
gramming languages, namely in prototype-based kgem such asesr [12]. A
SELF-object consists of named slots that can carryeslwhich in turn are references
to other objects. B F uses an “inherits from”-relationship that unifiestantiation
and specialization. Chambers et al. report on alairassumption as we do: “Few
SELF objects have totally unique format and behavisirice most objects are slightly
modified clones [12]. They use so-called “maps”fgpresenting common slots, such
that individually created objects only have to stdifference information. The basic
idea is quite similar to ours, the implementatidracgprogramming language, how-
ever, certainly differs from that of a modeling @onment.

An early report by Batory and Kim on the quite cdexpdomain of VLS| CAD
applications also explores the structural simijaat model elements [13]. They de-
scribe an implementation based on a relationabdatthat employs copying of data
to achieve good retrieval performance. Their systeowever, only supports one
single classification level.

Gutheil et al. describe an effort to build a midtrel modeling tool that is also
based on the clabject-idea [4]. They give some dnmehtal principles for coping with
connectors in such an environment, e.g. for theipkical representation. It is how-
ever not reported how industry-sized models arellean

7 Conclusion

This paper describes how core features of a clabgged modeling environment can
be implemented in practice. We describe the trabemgorithm for a condensed
model view and how to reduce memory consumptioa obndensed view. Based on
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the theoretical part, we evaluated our approach teist models of varying size. The
results show that our concepts and their implentiemis are efficient both with re-
spect to traversal time and memory consumption.rékelting clabject-based model-
ing environment meets the requirements for a realdhapplication, and thus demon-
strates that multi-level modeling can indeed baldselarge industrial applications.
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