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Abstract. Multi-level modeling using so-called clabjects has been proposed as 
an alternative to UML for modeling domains that feature more than one classi-
fication level. In real-world applications, however, this modeling formalism has 
not yet become popular, because it is a challenge to efficiently represent large 
models, and providing fast access to all information spread across the meta-
levels at the same time. In this paper we present the model representation con-
cept that relies on a permanent condensed view of the model, the corresponding 
traversal algorithms, and their implementations that proved adequate for model-
driven engineering of industrial automation systems consisting of hundreds of 
thousands of model elements. 
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1 Introduction 

For the development of software intensive systems, model-driven engineering (MDE) 
is a promising approach for handling their inherent complexity. For real-world appli-
cations, MDE requires adequate means for describing the system’s essential proper-
ties. In particular for domains that feature more than one classification-level, also 
known as meta-level, prominent modeling languages such as UML [1] fall short and 
workarounds are required [2]. Multi-level modeling, as an alternative to UML, is able 
to handle multiple domain meta-levels within a uniform framework [3]. Advantages 
of such a modeling approach have been shown by several contributions [2, 4, 5]. 

In real-world applications, however, multi-level modeling has been barely applied. 
Major hurdles for adopting a multi-level formalism are the lack of (1) available mod-
eling environments that allow rapid prototyping, (2) real-world applications that cor-
roborate the benefits of multi-level modeling, and (3) efficient implementations that 
are capable of handling large models. This paper focuses on (3) and briefly touches 
(2). Examples of (1) are described e.g. by Gutheil et al. [4]. 

We have applied multi-level modeling for automation systems in the domain of 
combustion engine development. There we use MDE to generate configuration pa-
rameters for the automation system. As it turned out in practice, the classification 
hierarchy supported by multi-level modeling is crucial for building and maintaining 
concise models. For the model transformations and for end-user views, however, it is 
often necessary to have a “condensed” view such that for a certain model element all 
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structural properties are easily accessible, rather than having to traverse the whole 
meta-level hierarchy to collect that information. What makes matters even more com-
plicated is that this condensed view in practice is not only used for read access, but is 
also modified. This implies that a method is needed for transparently mapping modi-
fication operations on the condensed view to the classification hierarchy. 

This paper shows how to efficiently store and traverse a multi-level model, which 
is also capable of handling modification operations. Together with an efficient repre-
sentation, we are able to provide a permanent condensed view of the model, which 
turned out to be the preferred access method for end-users. Since our models typically 
are large, that is, in the order of hundreds of thousands of model elements, we validate 
our performance goals by using sufficiently large test models. 

In the following we present the basics of multi-level models in our domain and key 
requirements for their representation and retrieval. We then describe our representa-
tion method and a traversal algorithm. Finally, we evaluate our implementation. 

2 Multi-Level Modeling with Clabjects 

Automation systems in our domain are inherently complex for various reasons. They 
are usually built individually and comprise a large number of ready made parts, which 
are often customized. They also integrate sophisticated measurement devices that are 
software intensive systems by themselves. In this section we briefly describe the 
multi-level modeling approach that was employed to cope with that complexity [5]. 

Multi-level modeling is an alternative approach to conventional modeling that is 
able to overcome the limited support for modeling domain metalevels. The basic idea 
of multi-level modeling is to explicitly represent the different abstraction levels of 
model elements. Assume, for example, that we have to model concrete combustion 
engines, but also families of combustion engines from different vendors that specify 
the properties of the individual engines, in UML. Conceptually, engine is an instantia-
tion of its family. Since instantiation is not directly supported at the M1 layer [1], 
workarounds such as the type-object pattern are required [2]. 

Different flavors of multi-level modeling have been proposed as solutions. Atkin-
son and Kühne, for example, propose a uniform notion of classes and objects, known 
as a clabject [2], that allows for an arbitrary number of classification levels; its advan-
tages are well documented [3, 2, 4]. In principle, a clabject is a modeling entity that 
has a so-called type facet as well as an instance facet. It thus can be an instance of a 
clabject from a higher level, and at the same time it can be the type for another clab-
ject instance at a lower level. Figure 1 shows the clabject model of our combustion 
engine example. The notation used here is similar to that of the original clabject con-
cept, that is, a combination of UML notations for classes and objects [2, 6]. Each 
model element has a compartment for the name, and a combined compartment for the 
type facet and the instance facet. The arrows between the levels represent the “in-
stance of” relationship. At the domain metatype level, the types Engine, Diesel En-
gine and Otto Engine are modeled like a conventional class hierarchy. Their fields, 
which are the equivalent of attributes in multi-level modeling [2], such as Inertia and 
Preheat_Time, are part of the corresponding clabject’s type facet.  
 



Representation and Traversal of Large Clabject Models      3 

 

Fig. 1. Clabject-based engine model 

Specified at the domain type level, the clabject DType is an instance of Diesel En-
gine. It provides values for the fields Max_Speed and Preheat_Time, which are part of 
DType’s instance facet, and introduced a new field ECU_Version, which is part of 
DType’s type facet. The domain instance D1 in turn instantiates DType and provides 
values for Inertia and ECU_Version. Note that D1’s type facet is empty. By defini-
tion, the clabjects at the top-level only have a type facet, whereas the clabjects at the 
bottom level only have an instance facet. 

3 Model Representation and Traversal Requirements 

Analyzing the intended uses of our models, we can identify a number of requirements 
and assumptions regarding the usage of the models and expected performance and 
space requirements. This guides the design and implementation of the actual internal 
representation as well as the traversal algorithms. 

 
 (I) Large models. Due to the inherent complexity of the domain, we expect the mod-
els to be large, that is, consisting of more than 100,000 elements. This implies that we 
have to be able to represent models of considerable size in a memory-efficient way. 
 
(II) Structural similarity. Automation systems in our domain typically are usually 
built individually of ready made parts, which are often customized. A substantial 
amount of these ready made parts, however, have similar structural information and 
share the same field values. For example, most temperature sensors are of the same 
type and thus the internal structure of their models is equivalent, except for some 
customization such as an additional plug. As an example, consider figure 2. 

 

 

Fig. 2. Multiple usage of sensor type: (a) unmodified, (b) with modification 
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Here the sensor type TSensor is instantiated multiple times. In case (a) the sensor type 
TSensor is used within the context of both, engine E1 as clabject T1, and engine E2 as 
clabject T2. In case (b) the sensor type TSensor is instantiated twice, but with a modi-
fication: in T2’ the element PlugC is added. The rest of the information modeled in 
TSensor, i.e. the containment of PlugA and PlugB, is the same for both instances. 
 
(III) Model traversal. The prospective users of models are either the end users, 
building or exploring the model in a graphical user interface, or the model transforma-
tion system, analyzing the model and applying transformations. In both cases, the 
main method for accessing model elements is through traversal, starting at the root of 
the containment hierarchy, and visiting connected and contained model elements. In 
contrast to random access, one does not access contained model elements directly. So 
in our example in figure 2 (b) PlugC is not accessed directly, but only by navigating 
from E2’ to T2’ and then to PlugC. 

We can distinguish two different ways of traversing a model: First, we can follow 
the connectors, which are the equivalent of associations in multi-level modeling [2]; 
for our example this corresponds to navigating from E2’ via T2’ to PlugC. Second, 
we can follow the instantiation and the generalization relationships; for the same 
example, this corresponds to navigating from E2’ to Engine or from T2’ to TSensor. 
Both traversals reveal essential information. Since for some uses, such as the model 
transformation, the complete model has to be traversed, it is crucial that the traversal 
of large models can be done in a reasonable amount of time. 

 
(IV) Condensed traversal. The model transformation, for example, focuses on the 
structure of a particular model element. It does not matter whether the structure is 
modeled at a certain model element itself, or whether is received via inheritance or 
instantiation. In other words, this requires a traversal by following the connectors, but 
also by incorporating the connectors that are instantiated or inherited. For users per-
forming this kind of “mixed” traversal, i.e. following connectors and also the instan-
tiation and inheritance relationships, it is necessary to transparently “flatten” the clas-
sification hierarchy during traversal to provide a condensed view on the model.  

As an example, consider the model shown in figure 2 (a). When the model trans-
formation performs a condensed traversal, the information that both engines E1 and 
E2 use the same definition of TSensor is not relevant. What is relevant is the fact that 
both engines have a sensor with two plugs. So for the model transformation, all struc-
tural information modeled in TSensor appears as if it was modeled directly in E1 and 
E2. In the end, the result of the traversal looks like each engine defines its own sensor, 
as shown in figure 3 (a) and (b).  

 

 

 Fig. 3. Transparent traversal result: (a) starting at E1, (b) starting at E2, and (c) starting at E2’ 

When we traverse the model starting at E1 we get the associated clabject T1, and in 
turn the clabjects associated with T1, i.e. PlugA and PlugB. Starting the traversal at 
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E2 yields an analogous result. Note that although in the model PlugA only appears 
within the definition of TSensor, in the overall traversal result the same plug appears 
twice: within E1, and within E2. In both occurences, however, PlugA represents dif-
ferent real-world elements and thus actually has different identities, stemming from 
the semantics of the composition aggregation. The information about the classifica-
tion, however, is not lost but available on request for each model element. For the 
elements T1 and T2, for example, it is possible to retrieve their types, i.e.  TSensor. 
For both appearances of PlugA the retrieved type is the PlugA contained in TSensor. 

For the case when the instantiation of TSensor is accompanied by a modification, 
as presented in figure 2 (b), we get the traversal result as shown in figure 3 (a) and (c). 
Again, starting the traversal at E1 yields the same result as described above. Starting 
the traversal at E2’, however, yields a different result: First we get the associated 
clabject T2’, and in turn the associated clabjects PlugA, PlugB, and PlugC.  Note that 
PlugC appears in the traversal result in the same way as PlugA and PlugB do. 

The algorithms necessary for condensed traversals could, of course, be imple-
mented by the model transformation itself. It turns out, however, that this kind of 
traversal is also required by our user interface, so the modeling environment supports 
condensed traversal as the default. 
  
(V) Modifiable traversal result. When a user traverses the model, the traversal result 
has to be modifiable, independent of the kind of traversal performed. While this is 
straightforward for the traversals following either connectors, or instantiation and 
inheritance, it is more difficult for the condensed traversal method. Assume, for ex-
ample, that a user traverses the model shown in figure 2 (a), which leads to the con-
densed traversal result show in figure 3 (a) and (b). Further assume that the user adds 
a plug named PlugC to T2. Performing this operation on the traversal result implies 
that the modeling environment has to store the difference between the original ele-
ment, which is TSensor, and its modified usage, which is T2. The expected effect on 
the traversal result is that the plug is retrieved additionally to the plugs already de-
fined in the original sensor, which is exactly what we have already seen in figure 3 
(c). Technically this requires determining the involved classification level and adding 
the modified elements there, such that we get the model as shown in figure 2 (b). 

4 Implementation 

The goals for moderate memory consumption (I) and good traversal performance (III) 
are contradicting, as keeping hundreds of thousands of individual elements in memory 
does not scale. So we have to trade memory for traversal speed. It turns out that the 
structural similarity in real-models (II) is a property that can be used to save memory, 
since we have to store structural information only once and reference that information 
when similar structures are modeled. For traversing the model in order to get the 
condensed view (IV), however, the saved memory implies some performance penalty 
since we have to reconstruct the structure of a clabject from the instantiation and 
inheritance relationships. Since the elements retrieved by the traversal have to be 



6      Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree 

modifiable (V), we must add certain information such that the link between the classi-
fication hierarchy and the condensed view does not get lost, as shown in the sequel. 

4.1 Language Representation 

The modeling environment has to provide the language models are built of. As such it 
must be capable of representing arbitrary models, model elements, their fields, and 
relationships between them. Furthermore, multiple classification levels have to be 
supported, so means for expressing instantiation and generalization have to be pro-
vided. The basic entities of our modeling language are Clabject, Connector, Field, and 
Data Type; they are shown in figure 4. 
 

 

Fig. 4. Representation of language elements  

The elements Clabject, Field and Connector are typical for clabject-based modeling 
languages [7]. What is unique by our solution is that the representation uses one sin-
gle refines-relationship to represent both, instantiation as well as inheritance, for clab-
jects and connectors. We denote an element that is the source of a refinement relation-
ship, i.e. a type or a generalization, as refined clabject, and the target of a refinement 
relationship, i.e. an instance or a specialization, as refining clabject. By using this 
single relationship we do not claim that the semantics of instantiation and inheritance 
are similar [8]. For the sole purpose of representing large models in memory and 
traversing them, however, a uniform treatment is beneficial, as we will see. 

4.2 Permanent Condensed View 

It is important to note that the language as described above is the interface of the 
modeling environment, i.e. model elements are represented as clabjects, connectors, 
and fields. Due to the traversal requirements as outlined earlier, we know that con-
densed traversal is the primary access method. Thus in our implementation condensed 
traversal is not just another way of exploring the model, but it is built in as foundation 
of the modeling environment. Its realization, however, requires some optimized data 
structures to be able to provide the condensed view within reasonable bounds of run-
time and memory consumption. This, however, can be hidden from the users of the 
modeling environment.  

4.3 Traversal of Refinements without Modifications 

The simplest case of refinement (remember, this is either instantiation or inheritance) 
is refining an element without adding any additional information, neither additional 



Representation and Traversal of Large Clabject Models      7 

structural information, nor any values for fields. An example of non-modifying re-
finement is shown in figure 2 (a). 

Let C be the set of all clabjects and x0∈C be a refining clabject that refines x1∈C, 
which in turn refines x2∈C, etc., such that we get the sequence of refined elements (x1, 
x2, …, xn), where xn∈C is an element that is not refined from any other element. Since 
neither inheritance nor instantiation allows circularity, n denotes the depth of the 
refinement path and is a finite integer with n ≥ 0. Further let R be the mapping of a 
clabject to the sequence of refined elements, e.g. R(x0)= (x1, x2, …, xn).  

The basic scheme for the traversal is to visit the clabject at the root of the contain-
ment hierarchy, all its contained clabjects, and subsequently all clabjects in the re-
finement path. For compositions of refined clabjects we have to take special care 
since the contained elements can appear several times in the traversal result. An ex-
ample is the double occurrence of PlugA in figure 3 (a) and (b). The identity of these 
elements is not only defined by their refined element, but also by the “context” in 
which they appear. Since the refinement depth can be greater than one, the context is 
given by the sequence of refining elements. In figure 3 (a) the context for PlugA is 
given by the sequence (T1); in figure 3 (b) the context is given by the sequence (T2).  

Since such clabjects actually do not exist, but appear only in the traversal result, we 
call them “virtual” clabjects. Virtual clabjects are temporarily represented by light-
weight placeholder objects that are created on the fly during traversal. The garbage 
collector can dispose of them after the traversal has finished. We get the following 
algorithm for determining the condensed traversal: 
 
traverseClabject(x, ctx) performs a condensed traversal for the clabject x with con-
text ctx, which is a list of clabjects, by visiting the clabject itself and then subse-
quently all clabjects along the refinement hierarchy. For a non-refining clabject the 
context ctx is the empty list. The add…–calls denote that a node in the traversal is 
reached and that it should be added to the traversal result. The symbol � denotes 
recursion.  
1. Visit the clabject; note that for virtual clabjects the context defines its identity: 

a) addClabject(x, ctx). 
2. Visit fields, including that of refined clabjects: 

a) ∀ field a ∈ getFields(x): 
b)  addField (a).  

3. Visit contained clabjects, including that of refined clabjects: 
a) ∀ (connector r, context c) ∈ getCompositions(x, ctx): 
b)  addConnector(r). 
c)  � traverseClabject(r.target, c). 

 
getFields(x) collects all fields of clabject x by following the refinement path. The 
result is a list of fields. The symbol || denotes concatenation of lists. 
1. Iterate over the refinement path, including x, to find fields of refined clabjects. 

a) ∀ clabject q ∈ x || R(x) : 
b)  set result � result || q. Fields. 

 
getCompositions(x, ctx) collects all compositions of clabject x with context ctx along 
the refinement path. Returns a list of pairs of the composition and the context.  
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1. Iterate over the refinement path, including x, to find compositions. 
a) ∀ clabject q ∈ x || R(x) : 
b)  ∀ connector r, r.source = q ∧ r.kind = Composition 
Add the composition to the result; remember that the context of a refined clabject is 
the sequence of the refining clabjects in the current refinement path: 
c)   set result � result || (r, cxt || R(x).firstUntil(q)). 

(The list returned by firstUntil(q) does not include q, and is empty if q∉R(x).) 

4.4 Modification and Materialization 

The second case of refinement occurs when a refining element adds further informa-
tion. The example of figure 2 (b) shows that the refining element T2’ adds a plug to 
the structure of the refined clabject TSensor. Representing this case is straightforward 
since all the information about the modification is located at the refining element. 
More complicated is the situation where the information about the modification is not 
located in the refining element. Consider the example of figure 5.  

 

 

Fig. 5. Engine with two sensors: (a) model and (b) condensed view 

The left hand side (a) shows the model of an engine E1 that contains two instances of 
TSensor, namely T1 and T2. The right hand side (b) shows the condensed view con-
taining the virtual clabjects for both sensors. Now assume that we want to connect 
PlugA of T1 with PlugB of T2. Since neither of these two plugs exists as a clabject, 
i.e. both are virtual clabjects in the condensed view, we have to transparently create 
some sort of proxy elements that can be endpoints of connectors. We call this process 
“materialization”, and figure 6 shows how it works. 
 

 

Fig. 6. Materialization: (a) model and (b) condensed view 

In order to be able to connect the two plugs, we first have to create the materialized 
representation of the corresponding virtual clabjects, as shown on the left hand side 
(a): PlugA of T1 is materialized as PlugA’, and PlugB of T2 is materialized as 
PlugB’. Now PlugA’ and PlugB’ are instances of the corresponding plugs of TSensor. 
Thus during materialization we create refinements. These refinements, however, until 
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now do not contain any information except their identity, so they do not use much 
memory. After materialization, we can create a connector between PlugA’ and 
PlugB’. In the condensed view, as shown on the right hand side (b), we then also get 
the condensed view of both materialized clabjects. 

A materialized clabject, similar to a virtual clabject, only needs to keep track of the 
refined clabject and the context, which is a list of references to other clabjects, to be 
uniquely identifiable. In addition, it only stores the difference information to the re-
fined clabject, so a materialized clabject also is a lightweight element. 

4.5 Traversal of Refinements with Modifications 

Traversing a model with simple modifications, i.e. additional contained elements 
directly at a refining clabject, is similar to traversing a model without modifications, 
but we also have to follow the additional compositions. It is easy to see that traverse-
Clabject  can already handle this case.  

For refinements with materialized clabjects, as shown in figure 6, a materialized 
clabject is reached indirectly by traversing its refined clabject since we follow only 
compositions. Consider the traversal order E1, T1, TSensor, and PlugA. Our algo-
rithm fails here since we expect to have PlugA’ in the traversal result, and not PlugA. 
To resolve that situation, we have to follow the refinement relationship in the reverse 
direction, since then we can transparently skip PlugA in the traversal and instead visit 
PlugA’. To prevent an exhaustive search for determining the inverse of the refinement 
relationship, we use a dictionary rmap that maps the refined elements to the refining 
elements. This map includes the elements that are depicted by the “Modification”-
relationship in the figure. In our implementation each clabject stores its own rmap, so 
we get the following traversal algorithm: 

 
traverseMaterializedClabject(x, ctx) performs a condensed traversal for the clabject 
x with context ctx; can handle clabjects as well as materialized clabjects. 
1. Visit the clabject; note that for virtual clabjects the context defines its identity: 

a) addClabject(x, ctx). 
2. Visit fields, including that of refined clabjects: 

a) ∀ field a ∈ getFields(x): 
b)  addField (a).  

3. Visit contained clabjects, including that of refined clabjects: 
a) ∀ (connector r, clabject y, context c) ∈ getMaterializedCompositions(x, ctx): 
b)  addConnector(r). 
c)  � traverseMaterializedClabject(y, c). 

 
getMaterializedCompositions(x, ctx) collects all compositions of clabject x with 
context ctx. Returns a list of triples with: composition, target clabject, and context. 
1. Iterate over the refinement path, including x, to find compositions: 

a) ∀ clabject q ∈ x || R(x): 
b)  rmaps � rmaps || q.rmap.     (q.rmap retrieves the rmap of clabject q) 
c)  ∀ connector r, r.source = q ∧ r.kind = Composition: 
When there is a materialized clabject for the target, take that instead of the target: 
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d)   if ∃ m, m ∈ rmaps: m.contains(r.target) then 
e)    set result � result || (r, m.get(r.target), cxt || R(x).firstUntil(q)). 
f)   else 
g)    set result � result || (r, r.target,  cxt || R(x).firstUntil(q)) . 

 
Traversing Non-Composition Connectors. Until now we have only considered 
compositions for traversal. For implementing the function getConnectors(x, ctx) that 
retrieves all connectors for a given clabject, we have to distinguish several cases. 
Consider figure 7. 

 

 

Fig. 7. Connectors and materialization: (a) model and (b) condensed view 

Following the connector g in analogous to following compositions such a and b. For 
following direct connectors between materialized clabjects, such as f, we also have all 
information that we need. For following indirect connectors, i.e. connectors that stem 
from refined elements, between materialized clabjects such as e in the context of T1, 
additional information is required. Assume that during traversal we are at PlugA’. 
Following the refinement leads to PlugA, in turn to e, and further to PlugB. Now, 
however, we cannot resolve to PlugB’. Having the rmap of T1 enables us to resolve 
that materialization, and in the general case we have to use the whole context for 
resolution. Thus the context becomes an essential part of every materialized clabject. 
A similar case is following an indirect connector from a virtual clabject to a material-
ized clabject, such as e in the context to T2. Here we also need to resolve the material-
ized clabject by inspecting the context. Since virtual clabjects cannot have direct con-
nectors (they must be materialized first), we have no further cases to consider. 
 
Connector Refinement. Besides refining clabjects, also connectors can be refined. 
Handling these refinements requires resolving the refined connectors when we visit a 
connector during a traversal step. Analogously to refining clabjects, this only requires 
that we store the reverse refinement information at the corresponding clabject’s rmap. 
 
Field Refinement. Refining clabjects is not done as an end in itself, but typically is 
used to either provide field values in case of an instantiation, or to add new fields in 
case of a specialization. Thus the refinement relationship between two clabjects also 
relates their fields. Consider, for example, figure 7. Let TSensor declare the field 
Range. The instantiation of TSensor as T1 demands that we provide a range, e.g. from 
0 to 100. Thus we can say that the field Range of T1 refines the field Range of TSen-
sor. Extending getFields of our traversal algorithm is similar to extending getCompo-
sitions to getMaterializedCompositions. 
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Refinement Path. The presentation of the algorithms above used the function R, 
mapping a clabject to the sequence of refined elements. In our actual implementation 
we do not maintain a global map, but rather at each clabject and materialized clabject 
we store a reference to the refined clabject only. While this is beneficial for the per-
formance, it is also necessary for the self-contained storage of the model parts, e.g. for 
building libraries of model elements. This, however, is out of scope for this paper.  

4.6 Modifying the Condensed View 

Since the condensed view is permanently available in our environment, we have to 
ensure that for any element that is visited via traversal, modification is possible. 
Modification for clabjects and materialized clabjects is straightforward, since these 
are exactly the places where we store the modification information. For modification 
of virtual clabjects, we first have to materialize them. Since for each virtual clabject 
the context is known, we already have all information that is needed to create the 
materialized clabject. So with our representation we have ensured that modifying the 
condensed view is possible, and moreover, that only local information is required. 

5 Performance Evaluation 

In order to demonstrate the feasibility of the internal representation and the traversal 
algorithm presented in the previous section, we performed measurements on test 
data.1 We decided to use perfect n-ary trees in our tests. Informally, a perfect n-ary 
tree is a tree where all leaf nodes are at the same depth and each inner node, i.e. non-
leaf node, has exactly n children. This decision to use such trees is based on the fact 
that we wanted to have (a) test structures of varying size, with (b) varying refinement 
depth. Furthermore, (c) the implementation of the condensed view does not depend on 
associations between model elements. In addition, we (d) want to use the same kind 
of test data for evaluating future extensions of the language. In our particular case, we 
used m trees, where each was a perfect quaternary tree of depth d. This test data con-
struction simulates the existence of m top-level nodes in the model. The choice for 
quaternary trees is backed by the informal analysis of several models created with an 
earlier prototypical version of the modeling environment. Our tests use m = 3 and d 
ranging from five to nine, resulting in 4,095 to 1,048,575 clabjects.  

Tests are performed for two principal cases: (a) trees without clabject refinement, 
and (b) trees where clabjects are refined to reuse structural information. In case (a), all 
clabjects are individually created. Thus in the traversal we do not encounter any vir-
tual clabjects. In case (b), the structure of the lowest one or two levels is reused. If 
one level is reused, a clabject containing n leaves is created upfront. This is then re-
used for all clabjects at level d – 1. These clabjects thus contain n virtual clabjects 

                                                           
1 All measurements were performed on a Dell Precision M65 Mobile Workstation, equipped 

with an Intel® CoreTM2 CPU operating at 2GHz and with 2 GB of main memory, and run-
ning Windows XP Professional. The runtime environment was Microsoft .NET 3.0. Tests 
were executed as individual processes to prevent side effects of e.g. the garbage collector. 
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each. In a subsequent test, we materialize them prior to traversal. Figure 8 shows the 
structure for both cases. 

 

 

Fig. 8. Test data used for the measurements 

The example on the left hand side represents case (a): a binary tree consisting of indi-
vidually created elements. The example on the right hand side represents case (b): 
clabject A is created upfront, and is refined multiple times in the tree, resulting in 
virtual cjabjects as e.g. contained in A’. These virtual clabjects can be materialized, 
e.g. simply by renaming them to “x” and “y”. 

If two levels are reused, a similar element is created upfront, but containing n clab-
jects which in turn refine from a clabject containing n leaves. While in principle it is 
possible to create even deeper reuse-hierarchies, we restricted the reuse depth in our 
test cases since we think this is a realistic measure for real world models. 

5.1 Traversal Performance 

As outlined in section 3, the model transformation code is one of the use cases for our 
models. In order to verify the feasibility of our modeling approach with respect to the 
performance requirements, we performed traversal tests of the whole model. Tra-
versal is done recursively on the condensed view, depth first, without performing any 
additional code besides book-keeping, such as counting the number of visited clab-
jects. The time is measured using .Net’s built in System.Stopwatch class. Case (a), i.e. 
a model without reuse, is taken as baseline. Traversal times for case (b), i.e. the mod-
els with element reuse, are expected to be slightly slower, since according to the im-
plementation described in section 4, the traversal has to create virtual leaf elements on 
the fly for each reused element. Traversal also has to keep track of the context infor-
mation. Table 1 shows the corresponding measurement results. 

Table 1. Model traversal performance 

Iteration Time [s] 
Refining Clabjects at 

1 Level 2 Levels 
Tree 

Depth 

Number 
of 

Clabjects 

No 
Clabject 
Refine-
ment 

Virtual Materialized Virtual Materialized 

5 4,095 0.02 0.02 0.02 0.03 0.02 
6 16,393 0.05 0.06 0.06 0.08 0.07 
7 65,535 0.14 0.24 0.24 0.31 0.29 
8 262,143 0.53 0.92 0.93 1.19 1.12 
9 1,048,575 2.15 3.53 3.65 4.74 4.54 
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Somewhat unexpected, traversing the tree with virtual clabjects is roughly equally fast 
as traversing the tree with materialized clabjects. We interpret the result in that it 
shows that the dynamic creation of virtual clabject on the fly is fast, while maintain-
ing the context for virtual and materialized clabjects is an overhead. The time used for 
visiting one individual clabject does not increase with growing model size. More 
important, the numbers also show that our reuse approach is reasonable fast, both for 
interactive use at modeling time, where only small parts are traversed, and for use by 
the model transformation. 

5.2 Memory Consumption 

Besides traversal performance, memory consumption of the models is one of our main 
requirements. Another series of tests was thus performed, measuring the impact of 
creating models on the total memory used by the process. Memory consumption is 
measured by using .Net’s built in System.GarbageCollector class before and after 
creating the model. The measured numbers thus represent the net size of the models. 
Case (a) again is the baseline. Models of case (b) are expected to consume signifi-
cantly less memory than in case (a), since according to the implementation described 
in section 4, virtual clabjects require no memory except for the context information, 
and even materialized clabjects need to represent only incremental information. Table 
2 shows the corresponding measurement results.  

Models for case (a), i.e. without reuse, require significant amounts of memory. In 
our example, up to 868.28 MB are necessary even for a model containing only simple 
clabjects with basic fields such as a name. In contrast, models for case (b), which 
reuse clabjects, require significantly less memory. For elements with one reuse-level, 
all leaves of the tree are virtual clabjects and do not require memory except for the 
context information. As expected, e.g. the tree of depth 9 with virtual clabjects as 
leaves, requires about the same amount of memory as the similar tree of depth 8, 
consisting of individually created clabject only. Analogously, the tree of depth 9 with 
two levels of reuse requires about the same amount of memory as the similar tree of 
depth 7 without reuse. 

Table 2. Model memory consumption 

Memory Consumption [MB] 
Refining Clabjects at 

1 Level 2 Levels Tree 
Depth 

Number 
of 

Clabjects 

No 
Clabject 

Refinement Virtual Materialized Virtual Materialized 
5 4,095 3.37 0.85 1.90 0.22 1.67 
6 16,393 13.23 3.42 7.31 0.85 6.36 
7 65,535 53.54 13.42 29.52 3.42 25.78 
8 262,143 215.01 54.30 119.26 13.43 103.23 
9 1,048,575 868.28 218.02 478.94 54.30 415.23 

 
The measurement was also performed where all virtual clabjects were materialized 
and thus exist as objects in memory. The memory consumption is still significantly 
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lower than for the models containing individually created clabjects. In real world 
models, however, we expect only a fraction of the virtual clabjects to be materialized, 
so this additional memory consumption is expected to be negligible. While memory 
consumption for models without reuse is problematic, we can see that our reuse ap-
proach keeps the memory consumption within practicable bounds. 

6 Related Work 

Handling of large models is a common requirement for the application of modeling 
environments in practice. The definition of “large”, however, actually depends on the 
kind of models and on the subject domain. A natural border case is a model that 
barely fits into main memory. For the Eclipse Modeling Framework [9], for example, 
this problem also arises and is solved by dynamically loading and unloading model 
parts, transparently performed by the persistency layer [10]. EMF or MOF-based 
modeling approaches [11], however, do not support multi-level modeling with clab-
jects. In our implementation, we could exploit the property of structural similarity, 
which allows incorporating the space-efficient representation right at the implementa-
tion of modeling elements, so we can represent sufficiently large models without 
reaching memory limits.  

The idea of unifying classes and objects has a long tradition in object-oriented pro-
gramming languages, namely in prototype-based languages such as SELF [12]. A 
SELF-object consists of named slots that can carry values, which in turn are references 
to other objects. SELF uses an “inherits from”-relationship that unifies instantiation 
and specialization. Chambers et al. report on a similar assumption as we do: “Few 
SELF objects have totally unique format and behavior”, since most objects are slightly 
modified clones [12]. They use so-called “maps” for representing common slots, such 
that individually created objects only have to store difference information. The basic 
idea is quite similar to ours, the implementation of a programming language, how-
ever, certainly differs from that of a modeling environment. 

An early report by Batory and Kim on the quite complex domain of VLSI CAD 
applications also explores the structural similarity of model elements [13]. They de-
scribe an implementation based on a relational database that employs copying of data 
to achieve good retrieval performance. Their system, however, only supports one 
single classification level. 

Gutheil et al. describe an effort to build a multi-level modeling tool that is also 
based on the clabject-idea [4]. They give some fundamental principles for coping with 
connectors in such an environment, e.g. for their graphical representation. It is how-
ever not reported how industry-sized models are handled. 

7 Conclusion 

This paper describes how core features of a clabject-based modeling environment can 
be implemented in practice. We describe the traversal algorithm for a condensed 
model view and how to reduce memory consumption of a condensed view. Based on 
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the theoretical part, we evaluated our approach with test models of varying size. The 
results show that our concepts and their implementations are efficient both with re-
spect to traversal time and memory consumption. The resulting clabject-based model-
ing environment meets the requirements for a real-world application, and thus demon-
strates that multi-level modeling can indeed be used for large industrial applications. 
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