

Representation and Traversal
of Large Clabject Models

T. Aschauer, G. Dauenhauer, W. Pree

Technical Report
September 4, 2009

Software & systems Research Center (SRC)

C. Doppler Laboratory Embedded Software Systems
Univ. Salzburg
5020 Salzburg
Austria, Europe

Representation and Traversal of Large Clabject Models

Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems, University of Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. Multi-level modeling using so-called clabjects has been proposed as
an alternative to UML for modeling domains that feature more than one classi-
fication level. In real-world applications, however, this modeling formalism has
not yet become popular, because it is a challenge to efficiently represent large
models, and providing fast access to all information spread across the meta-
levels at the same time. In this paper we present the model representation con-
cept that relies on a permanent condensed view of the model, the corresponding
traversal algorithms, and their implementations that proved adequate for model-
driven engineering of industrial automation systems consisting of hundreds of
thousands of model elements.

Keywords: Clabject, Multi-Level Modeling, Efficient Representation

1 Introduction

For the development of software intensive systems, model-driven engineering (MDE)
is a promising approach for handling their inherent complexity. For real-world appli-
cations, MDE requires adequate means for describing the system’s essential proper-
ties. In particular for domains that feature more than one classification-level, also
known as meta-level, prominent modeling languages such as UML [1] fall short and
workarounds are required [2]. Multi-level modeling, as an alternative to UML, is able
to handle multiple domain meta-levels within a uniform framework [3]. Advantages
of such a modeling approach have been shown by several contributions [2, 4, 5].

In real-world applications, however, multi-level modeling has been barely applied.
Major hurdles for adopting a multi-level formalism are the lack of (1) available mod-
eling environments that allow rapid prototyping, (2) real-world applications that cor-
roborate the benefits of multi-level modeling, and (3) efficient implementations that
are capable of handling large models. This paper focuses on (3) and briefly touches
(2). Examples of (1) are described e.g. by Gutheil et al. [4].

We have applied multi-level modeling for automation systems in the domain of
combustion engine development. There we use MDE to generate configuration pa-
rameters for the automation system. As it turned out in practice, the classification
hierarchy supported by multi-level modeling is crucial for building and maintaining
concise models. For the model transformations and for end-user views, however, it is
often necessary to have a “condensed” view such that for a certain model element all

2 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

structural properties are easily accessible, rather than having to traverse the whole
meta-level hierarchy to collect that information. What makes matters even more com-
plicated is that this condensed view in practice is not only used for read access, but is
also modified. This implies that a method is needed for transparently mapping modi-
fication operations on the condensed view to the classification hierarchy.

This paper shows how to efficiently store and traverse a multi-level model, which
is also capable of handling modification operations. Together with an efficient repre-
sentation, we are able to provide a permanent condensed view of the model, which
turned out to be the preferred access method for end-users. Since our models typically
are large, that is, in the order of hundreds of thousands of model elements, we validate
our performance goals by using sufficiently large test models.

In the following we present the basics of multi-level models in our domain and key
requirements for their representation and retrieval. We then describe our representa-
tion method and a traversal algorithm. Finally, we evaluate our implementation.

2 Multi-Level Modeling with Clabjects

Automation systems in our domain are inherently complex for various reasons. They
are usually built individually and comprise a large number of ready made parts, which
are often customized. They also integrate sophisticated measurement devices that are
software intensive systems by themselves. In this section we briefly describe the
multi-level modeling approach that was employed to cope with that complexity [5].

Multi-level modeling is an alternative approach to conventional modeling that is
able to overcome the limited support for modeling domain metalevels. The basic idea
of multi-level modeling is to explicitly represent the different abstraction levels of
model elements. Assume, for example, that we have to model concrete combustion
engines, but also families of combustion engines from different vendors that specify
the properties of the individual engines, in UML. Conceptually, engine is an instantia-
tion of its family. Since instantiation is not directly supported at the M1 layer [1],
workarounds such as the type-object pattern are required [2].

Different flavors of multi-level modeling have been proposed as solutions. Atkin-
son and Kühne, for example, propose a uniform notion of classes and objects, known
as a clabject [2], that allows for an arbitrary number of classification levels; its advan-
tages are well documented [3, 2, 4]. In principle, a clabject is a modeling entity that
has a so-called type facet as well as an instance facet. It thus can be an instance of a
clabject from a higher level, and at the same time it can be the type for another clab-
ject instance at a lower level. Figure 1 shows the clabject model of our combustion
engine example. The notation used here is similar to that of the original clabject con-
cept, that is, a combination of UML notations for classes and objects [2, 6]. Each
model element has a compartment for the name, and a combined compartment for the
type facet and the instance facet. The arrows between the levels represent the “in-
stance of” relationship. At the domain metatype level, the types Engine, Diesel En-
gine and Otto Engine are modeled like a conventional class hierarchy. Their fields,
which are the equivalent of attributes in multi-level modeling [2], such as Inertia and
Preheat_Time, are part of the corresponding clabject’s type facet.

Representation and Traversal of Large Clabject Models 3

Fig. 1. Clabject-based engine model

Specified at the domain type level, the clabject DType is an instance of Diesel En-
gine. It provides values for the fields Max_Speed and Preheat_Time, which are part of
DType’s instance facet, and introduced a new field ECU_Version, which is part of
DType’s type facet. The domain instance D1 in turn instantiates DType and provides
values for Inertia and ECU_Version. Note that D1’s type facet is empty. By defini-
tion, the clabjects at the top-level only have a type facet, whereas the clabjects at the
bottom level only have an instance facet.

3 Model Representation and Traversal Requirements

Analyzing the intended uses of our models, we can identify a number of requirements
and assumptions regarding the usage of the models and expected performance and
space requirements. This guides the design and implementation of the actual internal
representation as well as the traversal algorithms.

 (I) Large models. Due to the inherent complexity of the domain, we expect the mod-
els to be large, that is, consisting of more than 100,000 elements. This implies that we
have to be able to represent models of considerable size in a memory-efficient way.

(II) Structural similarity. Automation systems in our domain typically are usually
built individually of ready made parts, which are often customized. A substantial
amount of these ready made parts, however, have similar structural information and
share the same field values. For example, most temperature sensors are of the same
type and thus the internal structure of their models is equivalent, except for some
customization such as an additional plug. As an example, consider figure 2.

Fig. 2. Multiple usage of sensor type: (a) unmodified, (b) with modification

4 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

Here the sensor type TSensor is instantiated multiple times. In case (a) the sensor type
TSensor is used within the context of both, engine E1 as clabject T1, and engine E2 as
clabject T2. In case (b) the sensor type TSensor is instantiated twice, but with a modi-
fication: in T2’ the element PlugC is added. The rest of the information modeled in
TSensor, i.e. the containment of PlugA and PlugB, is the same for both instances.

(III) Model traversal. The prospective users of models are either the end users,
building or exploring the model in a graphical user interface, or the model transforma-
tion system, analyzing the model and applying transformations. In both cases, the
main method for accessing model elements is through traversal, starting at the root of
the containment hierarchy, and visiting connected and contained model elements. In
contrast to random access, one does not access contained model elements directly. So
in our example in figure 2 (b) PlugC is not accessed directly, but only by navigating
from E2’ to T2’ and then to PlugC.

We can distinguish two different ways of traversing a model: First, we can follow
the connectors, which are the equivalent of associations in multi-level modeling [2];
for our example this corresponds to navigating from E2’ via T2’ to PlugC. Second,
we can follow the instantiation and the generalization relationships; for the same
example, this corresponds to navigating from E2’ to Engine or from T2’ to TSensor.
Both traversals reveal essential information. Since for some uses, such as the model
transformation, the complete model has to be traversed, it is crucial that the traversal
of large models can be done in a reasonable amount of time.

(IV) Condensed traversal. The model transformation, for example, focuses on the
structure of a particular model element. It does not matter whether the structure is
modeled at a certain model element itself, or whether is received via inheritance or
instantiation. In other words, this requires a traversal by following the connectors, but
also by incorporating the connectors that are instantiated or inherited. For users per-
forming this kind of “mixed” traversal, i.e. following connectors and also the instan-
tiation and inheritance relationships, it is necessary to transparently “flatten” the clas-
sification hierarchy during traversal to provide a condensed view on the model.

As an example, consider the model shown in figure 2 (a). When the model trans-
formation performs a condensed traversal, the information that both engines E1 and
E2 use the same definition of TSensor is not relevant. What is relevant is the fact that
both engines have a sensor with two plugs. So for the model transformation, all struc-
tural information modeled in TSensor appears as if it was modeled directly in E1 and
E2. In the end, the result of the traversal looks like each engine defines its own sensor,
as shown in figure 3 (a) and (b).

 Fig. 3. Transparent traversal result: (a) starting at E1, (b) starting at E2, and (c) starting at E2’

When we traverse the model starting at E1 we get the associated clabject T1, and in
turn the clabjects associated with T1, i.e. PlugA and PlugB. Starting the traversal at

Representation and Traversal of Large Clabject Models 5

E2 yields an analogous result. Note that although in the model PlugA only appears
within the definition of TSensor, in the overall traversal result the same plug appears
twice: within E1, and within E2. In both occurences, however, PlugA represents dif-
ferent real-world elements and thus actually has different identities, stemming from
the semantics of the composition aggregation. The information about the classifica-
tion, however, is not lost but available on request for each model element. For the
elements T1 and T2, for example, it is possible to retrieve their types, i.e. TSensor.
For both appearances of PlugA the retrieved type is the PlugA contained in TSensor.

For the case when the instantiation of TSensor is accompanied by a modification,
as presented in figure 2 (b), we get the traversal result as shown in figure 3 (a) and (c).
Again, starting the traversal at E1 yields the same result as described above. Starting
the traversal at E2’, however, yields a different result: First we get the associated
clabject T2’, and in turn the associated clabjects PlugA, PlugB, and PlugC. Note that
PlugC appears in the traversal result in the same way as PlugA and PlugB do.

The algorithms necessary for condensed traversals could, of course, be imple-
mented by the model transformation itself. It turns out, however, that this kind of
traversal is also required by our user interface, so the modeling environment supports
condensed traversal as the default.

(V) Modifiable traversal result. When a user traverses the model, the traversal result
has to be modifiable, independent of the kind of traversal performed. While this is
straightforward for the traversals following either connectors, or instantiation and
inheritance, it is more difficult for the condensed traversal method. Assume, for ex-
ample, that a user traverses the model shown in figure 2 (a), which leads to the con-
densed traversal result show in figure 3 (a) and (b). Further assume that the user adds
a plug named PlugC to T2. Performing this operation on the traversal result implies
that the modeling environment has to store the difference between the original ele-
ment, which is TSensor, and its modified usage, which is T2. The expected effect on
the traversal result is that the plug is retrieved additionally to the plugs already de-
fined in the original sensor, which is exactly what we have already seen in figure 3
(c). Technically this requires determining the involved classification level and adding
the modified elements there, such that we get the model as shown in figure 2 (b).

4 Implementation

The goals for moderate memory consumption (I) and good traversal performance (III)
are contradicting, as keeping hundreds of thousands of individual elements in memory
does not scale. So we have to trade memory for traversal speed. It turns out that the
structural similarity in real-models (II) is a property that can be used to save memory,
since we have to store structural information only once and reference that information
when similar structures are modeled. For traversing the model in order to get the
condensed view (IV), however, the saved memory implies some performance penalty
since we have to reconstruct the structure of a clabject from the instantiation and
inheritance relationships. Since the elements retrieved by the traversal have to be

6 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

modifiable (V), we must add certain information such that the link between the classi-
fication hierarchy and the condensed view does not get lost, as shown in the sequel.

4.1 Language Representation

The modeling environment has to provide the language models are built of. As such it
must be capable of representing arbitrary models, model elements, their fields, and
relationships between them. Furthermore, multiple classification levels have to be
supported, so means for expressing instantiation and generalization have to be pro-
vided. The basic entities of our modeling language are Clabject, Connector, Field, and
Data Type; they are shown in figure 4.

Fig. 4. Representation of language elements

The elements Clabject, Field and Connector are typical for clabject-based modeling
languages [7]. What is unique by our solution is that the representation uses one sin-
gle refines-relationship to represent both, instantiation as well as inheritance, for clab-
jects and connectors. We denote an element that is the source of a refinement relation-
ship, i.e. a type or a generalization, as refined clabject, and the target of a refinement
relationship, i.e. an instance or a specialization, as refining clabject. By using this
single relationship we do not claim that the semantics of instantiation and inheritance
are similar [8]. For the sole purpose of representing large models in memory and
traversing them, however, a uniform treatment is beneficial, as we will see.

4.2 Permanent Condensed View

It is important to note that the language as described above is the interface of the
modeling environment, i.e. model elements are represented as clabjects, connectors,
and fields. Due to the traversal requirements as outlined earlier, we know that con-
densed traversal is the primary access method. Thus in our implementation condensed
traversal is not just another way of exploring the model, but it is built in as foundation
of the modeling environment. Its realization, however, requires some optimized data
structures to be able to provide the condensed view within reasonable bounds of run-
time and memory consumption. This, however, can be hidden from the users of the
modeling environment.

4.3 Traversal of Refinements without Modifications

The simplest case of refinement (remember, this is either instantiation or inheritance)
is refining an element without adding any additional information, neither additional

Representation and Traversal of Large Clabject Models 7

structural information, nor any values for fields. An example of non-modifying re-
finement is shown in figure 2 (a).

Let C be the set of all clabjects and x0∈C be a refining clabject that refines x1∈C,
which in turn refines x2∈C, etc., such that we get the sequence of refined elements (x1,
x2, …, xn), where xn∈C is an element that is not refined from any other element. Since
neither inheritance nor instantiation allows circularity, n denotes the depth of the
refinement path and is a finite integer with n ≥ 0. Further let R be the mapping of a
clabject to the sequence of refined elements, e.g. R(x0)= (x1, x2, …, xn).

The basic scheme for the traversal is to visit the clabject at the root of the contain-
ment hierarchy, all its contained clabjects, and subsequently all clabjects in the re-
finement path. For compositions of refined clabjects we have to take special care
since the contained elements can appear several times in the traversal result. An ex-
ample is the double occurrence of PlugA in figure 3 (a) and (b). The identity of these
elements is not only defined by their refined element, but also by the “context” in
which they appear. Since the refinement depth can be greater than one, the context is
given by the sequence of refining elements. In figure 3 (a) the context for PlugA is
given by the sequence (T1); in figure 3 (b) the context is given by the sequence (T2).

Since such clabjects actually do not exist, but appear only in the traversal result, we
call them “virtual” clabjects. Virtual clabjects are temporarily represented by light-
weight placeholder objects that are created on the fly during traversal. The garbage
collector can dispose of them after the traversal has finished. We get the following
algorithm for determining the condensed traversal:

traverseClabject(x, ctx) performs a condensed traversal for the clabject x with con-
text ctx, which is a list of clabjects, by visiting the clabject itself and then subse-
quently all clabjects along the refinement hierarchy. For a non-refining clabject the
context ctx is the empty list. The add…–calls denote that a node in the traversal is
reached and that it should be added to the traversal result. The symbol � denotes
recursion.
1. Visit the clabject; note that for virtual clabjects the context defines its identity:

a) addClabject(x, ctx).
2. Visit fields, including that of refined clabjects:

a) ∀ field a ∈ getFields(x):
b) addField (a).

3. Visit contained clabjects, including that of refined clabjects:
a) ∀ (connector r, context c) ∈ getCompositions(x, ctx):
b) addConnector(r).
c) � traverseClabject(r.target, c).

getFields(x) collects all fields of clabject x by following the refinement path. The
result is a list of fields. The symbol || denotes concatenation of lists.
1. Iterate over the refinement path, including x, to find fields of refined clabjects.

a) ∀ clabject q ∈ x || R(x) :
b) set result � result || q. Fields.

getCompositions(x, ctx) collects all compositions of clabject x with context ctx along
the refinement path. Returns a list of pairs of the composition and the context.

8 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

1. Iterate over the refinement path, including x, to find compositions.
a) ∀ clabject q ∈ x || R(x) :
b) ∀ connector r, r.source = q ∧ r.kind = Composition
Add the composition to the result; remember that the context of a refined clabject is
the sequence of the refining clabjects in the current refinement path:
c) set result � result || (r, cxt || R(x).firstUntil(q)).

(The list returned by firstUntil(q) does not include q, and is empty if q∉R(x).)

4.4 Modification and Materialization

The second case of refinement occurs when a refining element adds further informa-
tion. The example of figure 2 (b) shows that the refining element T2’ adds a plug to
the structure of the refined clabject TSensor. Representing this case is straightforward
since all the information about the modification is located at the refining element.
More complicated is the situation where the information about the modification is not
located in the refining element. Consider the example of figure 5.

Fig. 5. Engine with two sensors: (a) model and (b) condensed view

The left hand side (a) shows the model of an engine E1 that contains two instances of
TSensor, namely T1 and T2. The right hand side (b) shows the condensed view con-
taining the virtual clabjects for both sensors. Now assume that we want to connect
PlugA of T1 with PlugB of T2. Since neither of these two plugs exists as a clabject,
i.e. both are virtual clabjects in the condensed view, we have to transparently create
some sort of proxy elements that can be endpoints of connectors. We call this process
“materialization”, and figure 6 shows how it works.

Fig. 6. Materialization: (a) model and (b) condensed view

In order to be able to connect the two plugs, we first have to create the materialized
representation of the corresponding virtual clabjects, as shown on the left hand side
(a): PlugA of T1 is materialized as PlugA’, and PlugB of T2 is materialized as
PlugB’. Now PlugA’ and PlugB’ are instances of the corresponding plugs of TSensor.
Thus during materialization we create refinements. These refinements, however, until

Representation and Traversal of Large Clabject Models 9

now do not contain any information except their identity, so they do not use much
memory. After materialization, we can create a connector between PlugA’ and
PlugB’. In the condensed view, as shown on the right hand side (b), we then also get
the condensed view of both materialized clabjects.

A materialized clabject, similar to a virtual clabject, only needs to keep track of the
refined clabject and the context, which is a list of references to other clabjects, to be
uniquely identifiable. In addition, it only stores the difference information to the re-
fined clabject, so a materialized clabject also is a lightweight element.

4.5 Traversal of Refinements with Modifications

Traversing a model with simple modifications, i.e. additional contained elements
directly at a refining clabject, is similar to traversing a model without modifications,
but we also have to follow the additional compositions. It is easy to see that traverse-
Clabject can already handle this case.

For refinements with materialized clabjects, as shown in figure 6, a materialized
clabject is reached indirectly by traversing its refined clabject since we follow only
compositions. Consider the traversal order E1, T1, TSensor, and PlugA. Our algo-
rithm fails here since we expect to have PlugA’ in the traversal result, and not PlugA.
To resolve that situation, we have to follow the refinement relationship in the reverse
direction, since then we can transparently skip PlugA in the traversal and instead visit
PlugA’. To prevent an exhaustive search for determining the inverse of the refinement
relationship, we use a dictionary rmap that maps the refined elements to the refining
elements. This map includes the elements that are depicted by the “Modification”-
relationship in the figure. In our implementation each clabject stores its own rmap, so
we get the following traversal algorithm:

traverseMaterializedClabject(x, ctx) performs a condensed traversal for the clabject
x with context ctx; can handle clabjects as well as materialized clabjects.
1. Visit the clabject; note that for virtual clabjects the context defines its identity:

a) addClabject(x, ctx).
2. Visit fields, including that of refined clabjects:

a) ∀ field a ∈ getFields(x):
b) addField (a).

3. Visit contained clabjects, including that of refined clabjects:
a) ∀ (connector r, clabject y, context c) ∈ getMaterializedCompositions(x, ctx):
b) addConnector(r).
c) � traverseMaterializedClabject(y, c).

getMaterializedCompositions(x, ctx) collects all compositions of clabject x with
context ctx. Returns a list of triples with: composition, target clabject, and context.
1. Iterate over the refinement path, including x, to find compositions:

a) ∀ clabject q ∈ x || R(x):
b) rmaps � rmaps || q.rmap. (q.rmap retrieves the rmap of clabject q)
c) ∀ connector r, r.source = q ∧ r.kind = Composition:
When there is a materialized clabject for the target, take that instead of the target:

10 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

d) if ∃ m, m ∈ rmaps: m.contains(r.target) then
e) set result � result || (r, m.get(r.target), cxt || R(x).firstUntil(q)).
f) else
g) set result � result || (r, r.target, cxt || R(x).firstUntil(q)) .

Traversing Non-Composition Connectors. Until now we have only considered
compositions for traversal. For implementing the function getConnectors(x, ctx) that
retrieves all connectors for a given clabject, we have to distinguish several cases.
Consider figure 7.

Fig. 7. Connectors and materialization: (a) model and (b) condensed view

Following the connector g in analogous to following compositions such a and b. For
following direct connectors between materialized clabjects, such as f, we also have all
information that we need. For following indirect connectors, i.e. connectors that stem
from refined elements, between materialized clabjects such as e in the context of T1,
additional information is required. Assume that during traversal we are at PlugA’.
Following the refinement leads to PlugA, in turn to e, and further to PlugB. Now,
however, we cannot resolve to PlugB’. Having the rmap of T1 enables us to resolve
that materialization, and in the general case we have to use the whole context for
resolution. Thus the context becomes an essential part of every materialized clabject.
A similar case is following an indirect connector from a virtual clabject to a material-
ized clabject, such as e in the context to T2. Here we also need to resolve the material-
ized clabject by inspecting the context. Since virtual clabjects cannot have direct con-
nectors (they must be materialized first), we have no further cases to consider.

Connector Refinement. Besides refining clabjects, also connectors can be refined.
Handling these refinements requires resolving the refined connectors when we visit a
connector during a traversal step. Analogously to refining clabjects, this only requires
that we store the reverse refinement information at the corresponding clabject’s rmap.

Field Refinement. Refining clabjects is not done as an end in itself, but typically is
used to either provide field values in case of an instantiation, or to add new fields in
case of a specialization. Thus the refinement relationship between two clabjects also
relates their fields. Consider, for example, figure 7. Let TSensor declare the field
Range. The instantiation of TSensor as T1 demands that we provide a range, e.g. from
0 to 100. Thus we can say that the field Range of T1 refines the field Range of TSen-
sor. Extending getFields of our traversal algorithm is similar to extending getCompo-
sitions to getMaterializedCompositions.

Representation and Traversal of Large Clabject Models 11

Refinement Path. The presentation of the algorithms above used the function R,
mapping a clabject to the sequence of refined elements. In our actual implementation
we do not maintain a global map, but rather at each clabject and materialized clabject
we store a reference to the refined clabject only. While this is beneficial for the per-
formance, it is also necessary for the self-contained storage of the model parts, e.g. for
building libraries of model elements. This, however, is out of scope for this paper.

4.6 Modifying the Condensed View

Since the condensed view is permanently available in our environment, we have to
ensure that for any element that is visited via traversal, modification is possible.
Modification for clabjects and materialized clabjects is straightforward, since these
are exactly the places where we store the modification information. For modification
of virtual clabjects, we first have to materialize them. Since for each virtual clabject
the context is known, we already have all information that is needed to create the
materialized clabject. So with our representation we have ensured that modifying the
condensed view is possible, and moreover, that only local information is required.

5 Performance Evaluation

In order to demonstrate the feasibility of the internal representation and the traversal
algorithm presented in the previous section, we performed measurements on test
data.1 We decided to use perfect n-ary trees in our tests. Informally, a perfect n-ary
tree is a tree where all leaf nodes are at the same depth and each inner node, i.e. non-
leaf node, has exactly n children. This decision to use such trees is based on the fact
that we wanted to have (a) test structures of varying size, with (b) varying refinement
depth. Furthermore, (c) the implementation of the condensed view does not depend on
associations between model elements. In addition, we (d) want to use the same kind
of test data for evaluating future extensions of the language. In our particular case, we
used m trees, where each was a perfect quaternary tree of depth d. This test data con-
struction simulates the existence of m top-level nodes in the model. The choice for
quaternary trees is backed by the informal analysis of several models created with an
earlier prototypical version of the modeling environment. Our tests use m = 3 and d
ranging from five to nine, resulting in 4,095 to 1,048,575 clabjects.

Tests are performed for two principal cases: (a) trees without clabject refinement,
and (b) trees where clabjects are refined to reuse structural information. In case (a), all
clabjects are individually created. Thus in the traversal we do not encounter any vir-
tual clabjects. In case (b), the structure of the lowest one or two levels is reused. If
one level is reused, a clabject containing n leaves is created upfront. This is then re-
used for all clabjects at level d – 1. These clabjects thus contain n virtual clabjects

1 All measurements were performed on a Dell Precision M65 Mobile Workstation, equipped

with an Intel® CoreTM2 CPU operating at 2GHz and with 2 GB of main memory, and run-
ning Windows XP Professional. The runtime environment was Microsoft .NET 3.0. Tests
were executed as individual processes to prevent side effects of e.g. the garbage collector.

12 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

each. In a subsequent test, we materialize them prior to traversal. Figure 8 shows the
structure for both cases.

Fig. 8. Test data used for the measurements

The example on the left hand side represents case (a): a binary tree consisting of indi-
vidually created elements. The example on the right hand side represents case (b):
clabject A is created upfront, and is refined multiple times in the tree, resulting in
virtual cjabjects as e.g. contained in A’. These virtual clabjects can be materialized,
e.g. simply by renaming them to “x” and “y”.

If two levels are reused, a similar element is created upfront, but containing n clab-
jects which in turn refine from a clabject containing n leaves. While in principle it is
possible to create even deeper reuse-hierarchies, we restricted the reuse depth in our
test cases since we think this is a realistic measure for real world models.

5.1 Traversal Performance

As outlined in section 3, the model transformation code is one of the use cases for our
models. In order to verify the feasibility of our modeling approach with respect to the
performance requirements, we performed traversal tests of the whole model. Tra-
versal is done recursively on the condensed view, depth first, without performing any
additional code besides book-keeping, such as counting the number of visited clab-
jects. The time is measured using .Net’s built in System.Stopwatch class. Case (a), i.e.
a model without reuse, is taken as baseline. Traversal times for case (b), i.e. the mod-
els with element reuse, are expected to be slightly slower, since according to the im-
plementation described in section 4, the traversal has to create virtual leaf elements on
the fly for each reused element. Traversal also has to keep track of the context infor-
mation. Table 1 shows the corresponding measurement results.

Table 1. Model traversal performance

Iteration Time [s]
Refining Clabjects at

1 Level 2 Levels
Tree

Depth

Number
of

Clabjects

No
Clabject
Refine-
ment

Virtual Materialized Virtual Materialized

5 4,095 0.02 0.02 0.02 0.03 0.02
6 16,393 0.05 0.06 0.06 0.08 0.07
7 65,535 0.14 0.24 0.24 0.31 0.29
8 262,143 0.53 0.92 0.93 1.19 1.12
9 1,048,575 2.15 3.53 3.65 4.74 4.54

Representation and Traversal of Large Clabject Models 13

Somewhat unexpected, traversing the tree with virtual clabjects is roughly equally fast
as traversing the tree with materialized clabjects. We interpret the result in that it
shows that the dynamic creation of virtual clabject on the fly is fast, while maintain-
ing the context for virtual and materialized clabjects is an overhead. The time used for
visiting one individual clabject does not increase with growing model size. More
important, the numbers also show that our reuse approach is reasonable fast, both for
interactive use at modeling time, where only small parts are traversed, and for use by
the model transformation.

5.2 Memory Consumption

Besides traversal performance, memory consumption of the models is one of our main
requirements. Another series of tests was thus performed, measuring the impact of
creating models on the total memory used by the process. Memory consumption is
measured by using .Net’s built in System.GarbageCollector class before and after
creating the model. The measured numbers thus represent the net size of the models.
Case (a) again is the baseline. Models of case (b) are expected to consume signifi-
cantly less memory than in case (a), since according to the implementation described
in section 4, virtual clabjects require no memory except for the context information,
and even materialized clabjects need to represent only incremental information. Table
2 shows the corresponding measurement results.

Models for case (a), i.e. without reuse, require significant amounts of memory. In
our example, up to 868.28 MB are necessary even for a model containing only simple
clabjects with basic fields such as a name. In contrast, models for case (b), which
reuse clabjects, require significantly less memory. For elements with one reuse-level,
all leaves of the tree are virtual clabjects and do not require memory except for the
context information. As expected, e.g. the tree of depth 9 with virtual clabjects as
leaves, requires about the same amount of memory as the similar tree of depth 8,
consisting of individually created clabject only. Analogously, the tree of depth 9 with
two levels of reuse requires about the same amount of memory as the similar tree of
depth 7 without reuse.

Table 2. Model memory consumption

Memory Consumption [MB]
Refining Clabjects at

1 Level 2 Levels Tree
Depth

Number
of

Clabjects

No
Clabject

Refinement Virtual Materialized Virtual Materialized
5 4,095 3.37 0.85 1.90 0.22 1.67
6 16,393 13.23 3.42 7.31 0.85 6.36
7 65,535 53.54 13.42 29.52 3.42 25.78
8 262,143 215.01 54.30 119.26 13.43 103.23
9 1,048,575 868.28 218.02 478.94 54.30 415.23

The measurement was also performed where all virtual clabjects were materialized
and thus exist as objects in memory. The memory consumption is still significantly

14 Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

lower than for the models containing individually created clabjects. In real world
models, however, we expect only a fraction of the virtual clabjects to be materialized,
so this additional memory consumption is expected to be negligible. While memory
consumption for models without reuse is problematic, we can see that our reuse ap-
proach keeps the memory consumption within practicable bounds.

6 Related Work

Handling of large models is a common requirement for the application of modeling
environments in practice. The definition of “large”, however, actually depends on the
kind of models and on the subject domain. A natural border case is a model that
barely fits into main memory. For the Eclipse Modeling Framework [9], for example,
this problem also arises and is solved by dynamically loading and unloading model
parts, transparently performed by the persistency layer [10]. EMF or MOF-based
modeling approaches [11], however, do not support multi-level modeling with clab-
jects. In our implementation, we could exploit the property of structural similarity,
which allows incorporating the space-efficient representation right at the implementa-
tion of modeling elements, so we can represent sufficiently large models without
reaching memory limits.

The idea of unifying classes and objects has a long tradition in object-oriented pro-
gramming languages, namely in prototype-based languages such as SELF [12]. A
SELF-object consists of named slots that can carry values, which in turn are references
to other objects. SELF uses an “inherits from”-relationship that unifies instantiation
and specialization. Chambers et al. report on a similar assumption as we do: “Few
SELF objects have totally unique format and behavior”, since most objects are slightly
modified clones [12]. They use so-called “maps” for representing common slots, such
that individually created objects only have to store difference information. The basic
idea is quite similar to ours, the implementation of a programming language, how-
ever, certainly differs from that of a modeling environment.

An early report by Batory and Kim on the quite complex domain of VLSI CAD
applications also explores the structural similarity of model elements [13]. They de-
scribe an implementation based on a relational database that employs copying of data
to achieve good retrieval performance. Their system, however, only supports one
single classification level.

Gutheil et al. describe an effort to build a multi-level modeling tool that is also
based on the clabject-idea [4]. They give some fundamental principles for coping with
connectors in such an environment, e.g. for their graphical representation. It is how-
ever not reported how industry-sized models are handled.

7 Conclusion

This paper describes how core features of a clabject-based modeling environment can
be implemented in practice. We describe the traversal algorithm for a condensed
model view and how to reduce memory consumption of a condensed view. Based on

Representation and Traversal of Large Clabject Models 15

the theoretical part, we evaluated our approach with test models of varying size. The
results show that our concepts and their implementations are efficient both with re-
spect to traversal time and memory consumption. The resulting clabject-based model-
ing environment meets the requirements for a real-world application, and thus demon-
strates that multi-level modeling can indeed be used for large industrial applications.

Acknowledgements
The authors thank Stefan Preuer for his excellent implementation of the clabject rep-
resentation code and the traversal algorithms.

References

1. Management Group: Unified Modeling Language Infrastructure, v 2.1.2, (2007)
2. Atkinson, C. and Kühne, T.: Reducing accidental complexity in domain models. Software

and Systems Modeling, Vol. 7, No. 3, pp. 345–359, Springer-Verlag (2007)
3. Atkinson, C. and Kühne, T.: The Essence of Multilevel Metamodeling. In proceedings of

UML 2001, LNCS Vol. 2185, pp. 19–33 (2001)
4. Gutheil, M., Kennel, B, and Atkinson, C.: A Systematic Approach to Connectors in a

Multi-level Modeling Environment. In proceedings of MoDELS'08, LNCS Vol. 5301, pp.
843–857 (2008)

5. Aschauer, T., Dauenhauer, G., Pree, W.: Multi-Level Modeling for Industrial Automation
Systems. 35th Euromicro SEAA Conference, to appear (2009)

6. Object Management Group: Unified Modeling Language Superstructure, v 2.1.2 (2007)
7. Atkinson, C., Gutheil, M., Kennel, B.: A Flexible Infrastructure for Multi-Level Language

Engineering, to appear (2009)
8. Kühne, T.: Contrasting Classification with Generalisation. In Proceedings of the Sixth

Asia-Pacific Conference on Conceptual Modelling, APCCM 2009, New Zealand, 2009.
9. Eclipse Foundation, Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
10. Stepper, E.: Scale, Share and Store your Models with CDO 2.0. Talk at eclipseCON (2009)
11. Object Management Group, Meta Object Facility (MOF) 2.0 Core Specification (2004)
12. Chambers, C., Ungar, D., and Lee, E.: An efficient implementation of SELF, a dynamically-

typed object-oriented language based on prototypes. Lisp Symb. Comput. Vol. 4, No. 3, pp.
243–281 (1991)

13. Batory, D. S., and Kim, W.: Modeling concepts for VLSI CAD objects, ACM Transactions
on Database Systems, Vol. 10, No. 3, pp. 322–346 (1985)

