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Abstract

In this talk basic general properties of f -divergences, including their
axiomatic, and some important classes of f -divergences are presented.

Without essential loss of insight we restrict ourselves to discrete prob-
ability distributions and note that the extension to the general case relies
strongly on the Lebesgue-Radon-Nikodym Theorem.

This talk was presented while participating in a workshop of the Re-
search Group in Mathematical Inequalities and Applications at the Vic-
toria University, Melbourne, Australia, in October 2002.

1 BASIC NOTIONS

Let Ω = {x1, x2, ...} be a set with at least two elements, P(Ω) the set of all
subsets of Ω and P the set of all probability distributions P = (p(x) : x ∈
Ω) on Ω .

A pair (P, Q) ∈ P2 of probability distributions is called a (simple versus
simple) testing problem.

Two probability distributions P and Q are called orthogonal ( P ⊥ Q ) if
there exists an element A ∈ P(Ω) such that P (A) = Q(Ac) = 0 where Ac =
Ω\A .

A testing problem (P, Q) ∈ P2 is called least infomative if P = Q and is
called most informative if P ⊥ Q .

Furthermore, let F be the set of convex functions f : [0,∞) 7→ (−∞,∞] con-
tinuous at 0 (i.e. f(0) = limu↓0 f(u) ) , F0 = {f ∈ F : f(1) = 0} and
let D−f and D+f denote the left-hand side and right-hand side derivative
of f , respectively. Further let f∗ ∈ F , defined by

f∗(u) = uf

(
1
u

)
, u ∈ (0,∞) ,
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the ∗-conjugate (convex) function of f , let a function f ∈ F satisfying
f∗ ≡ f be called ∗-self conjugate and let f̃ = f + f∗ . Then

0 · f∗ (
x
0

)
= x · f (

0
x

)
= x · f(0) for x ∈ (0,∞)

0 · f (
y
0

)
= y · f∗

(
0
y

)
= y · f∗(0) for y ∈ (0,∞)

0 · f (
0
0

)
= 0 · f∗ (

0
0

)
= 0 .

Definition (Csiszár (1963), Ali & Silvey (1966)): Let P,Q ∈ P . Then

If (Q,P ) =
∑

x∈Ω

p(x)f
(

q(x)
p (x)

)

is called the f -divergence of the probability distributions Q and P .

Remark 1: Because of p(x)f
(

q(x)
p(x)

)
= q(x)f∗

(
q(x)
p(x)

)
∀ x ∈ Ω it holds

If (Q,P ) = If∗ (P, Q) ∀ (P, Q) ∈ P2 .

EXAMPLES: Total Variation Distance ( f(u) = |u− 1| = f∗(u) )

If (Q,P ) =
∑

x∈Ω

p(x)
∣∣∣∣
q(x)
p (x)

− 1
∣∣∣∣ =

∑

x∈Ω

|q(x)− p(x)|

χ2-Divergence ( f(u) = (u− 1)2 , f∗(u) = (u−1)2

u )

If (Q,P ) =
∑

x∈Ω

p(x)
(

q(x)
p (x)

− 1
)2

=
∑

x∈Ω

(q(x)− p(x))2

p(x)
= If∗ (P, Q)

Kullback-Leibler Divergence ( f(u) = u ln(u) , f∗(u) = − ln(u) )

If (Q,P ) =
∑

x∈Ω

p(x)
q(x)
p (x)

ln
(

q(x)
p (x)

)
=

∑

x∈Ω

q(x) ln
(

q(x)
p (x)

)
= If∗ (P, Q)

2 BASIC PROPERTIES (Part 1)

Uniqueness Theorem (Liese & Vajda (1987)): Let f, f1 ∈ F . Then

(1) If1 (Q, P ) = If (Q,P ) ∀ (P, Q) ∈ P2 iff (2) ∃c ∈ R : f1(u)−f(u) = c (u− 1) .

Proof: (2) =⇒ (1): The f -divergence of the function f1− f vanishes because
of

If1−f (Q,P ) = c
∑

x∈Ω

(q(x)− p(x)) = c

(∑

x∈Ω

q(x)−
∑

x∈Ω

p(x)

)
= c (1− 1) = 0 .
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(1) =⇒ (2): For this direction we restrict ourselves to the case f̃(0) < ∞ .
Then the Range of Values Theorem stated below implies f̃1(0) = f̃(0) and
therefore c = f∗1 (0)− f∗(0) = f(0)− f1(0) .

For u ≤ 1 let P = (1, 0) and Q = (u, 1 − u) . Then (1) implies in view of
If (Q,P ) = f (u) + 0f( 1−u

0 ) = f (u) + (1− u) f∗(0)

f1(u)− f(u) = (1− u) (f∗(0)− f∗1 (0)) = c(u− 1) .

For u > 1 let P = ( 1
u , 1 − 1

u ) and Q = (1, 0) . Then (1) implies in view
of If (Q,P ) = 1

uf (u) +
(
1− 1

u

)
f(0)

f1(u)− f(u) = (u− 1) (f(0)− f1(0)) = c(u− 1) .

Remark 2: a) Owing to (u− 1)2 = u2 − 1− 2 (u− 1)

χ2(Q,P ) =
∑

x∈Ω

p(x)
(

q(x)
p (x)

− 1
)2

=
∑

x∈Ω

p(x)

((
q(x)
p (x)

)2

− 1

)

b) Let f ∈ F and c ∈ [D−f(1), D+f(1)] then f1(u) = f(u)−c (u− 1) satisfies
f1(u) ≥ f(1) ∀ u ∈ [0,∞) while not changing the f -divergence. Hence we
can assume f(u) ≥ f(1) ∀ u ∈ [0,∞) without loss of generality. For theo-
retical purposes and purposes of unification of specific f -divergences it is often
convenient to switch to such functions f . (See e.g. the making of Class II).

Symmetry Theorem (Liese & Vajda (1987)): Let f ∈ F and f∗ be its
∗-conjugate. Then

If∗ (Q,P ) = If (Q,P ) ∀ (P, Q) ∈ P2 iff ∃c ∈ R : f∗(u)−f(u) = c (u− 1) .

In words: An f -divergence is symmetric iff - apart from an additional linear
term c (u− 1) - f is ∗-self conjugate.

Remark 3: a) Obviously the functions f̃ = f + f∗ and f̃/2 are ∗-self
conjugate. Owing to

f(u) + f∗(u)
u + 1

=
1

u + 1
f(u) +

u

u + 1
f(

1
u

) ≥ f(1)

it holds f̃(u)/2 − f(1) ≥ f(1)
2 (u − 1) and hence f(u) − f(1) ≥ f(1)

2 (u −
1) provided f is ∗-self conjugate.

b) The maximum of f and f∗, namely f̂(u) = max(f(u), f∗(u)) is also
∗-self conjugate. This provides another possibility to obtain a ∗-self conjugate
function from a given function f ∈ F .
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Remark 4: Note that

If (Q,P ) = f(0) · P ({x : q (x) = 0}) + f∗(0) ·Q ({x : p (x) = 0}) +

+
∑

x: q(x)·p(x)>0

p(x)f
(

q(x)
p (x)

)

and that P ({x : q (x) = 0}) is the amount of singularity of the distribution P with
respect to Q and Q ({x : p (x) = 0}) is the amount of singularity of the
distribution Q with respect to P . Therefore f(0) = ∞ and f∗ (0) =
∞ imply If (Q,P ) = ∞ unless {x ∈ Ω : q (x) · p (x) > 0} = Ω, i.e. all
probabilities are positive.

Range of Values Theorem (Vajda (1972)): It holds

f(1) ≤ If (Q,P ) ≤ f(0) + f∗(0) ∀ Q, P ∈ P .

In the first inequality, equality holds if / iff Q = P . The latter provided f is
strictly convex at 1 .

In the second, equality holds if / iff Q ⊥ P . The latter provided f̃(0) =
f(0) + f∗(0) < ∞ .

Remark 5: In order to exclude the trivial case If (Q, P ) ≡ f(1) we will
assume from now on that f ∈ F is not trivial, i.e. it satisfies f̃(0)−f(1) > 0 .

Measures of Similarity 1

In this case we concentrate on the first inequality. The difference If (Q,P )−
f(1) is a quantity which compares the given testing problem (P, Q) ∈ P2 with
the least informative testing problem. These quantities are therefore appropriate
for applications where the two probability distributions are or get very close.

In order that If (Q,P ) fulfils the basic property (M1) of a measure of
similarity, namely

If (Q,P ) ≥ 0 with equality iff Q = P , (M1)

f needs to have the properties (i,0) f(1) = 0 and (i,1) f is strictly convex
at 1 .

Given a function f ∈ F , property (i,0) can easily be achieved by setting
f(u) := f(u)− f(1) . Hence we will assume f ∈ F0 without loss of generality.

Measures of (approximate) Orthogonality

In this case we concentrate on the second inequality. The difference f̃(0)−
If (Q,P ) is a quantity which compares the given testing problem (P, Q) ∈

1The notions ’Measures of Similarity’ and ’Measures of Orthogonality’, which are not
common in literature, are intended to distinguish between the two major types of applications
of f -divergences.
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P2 with the most informative testing problem. These quantities are therefore
appropriate for applications where the two probability distributions are or get
nearly orthogonal.

To ensure that this difference exists we have to assume f̃(0) < ∞ and hence
f(0) < ∞ and f∗(0) < ∞ .

We attribute to such a (convex) function f ∈ F the concave function
g : [0,∞) 7→ [0,∞) given by

g(u) = f(0) + u · f∗(0)− f(u) ,

which - obviously - satisfies g (0) = g∗(0) = 0 , g(1) = f̃(0) − f(1) and is
monotone increasing, and define

Ig (Q,P ) =
∑

x∈Ω

p(x)g
(

q(x)
p (x)

)
.

Then owing to Ig (Q,P ) = f̃(0) − If (Q,P ) our ’Measure of Orthogonality’
can be expressed in terms of Ig (Q,P ) more appropriately.

For all f ∈ F satisfying 0 < f̃(0)− f(1) < ∞ the quantity Ig (Q, P ) is
defined and fulfils the basic property (O) of a measure of orthogonality, namely

Ig (Q,P ) ≥ 0 with equality iff Q ⊥ P . (O)

Remark 6: It is important to note that both types of measures have their
specific applications, whereby many applications of the ’Measures of Similarity’
rely heavily on the convexity of the function f, whereas those of the ’Measures
of Orthogonality’ rely heavily on the concavity of the function g .

3 CLASSES OF f-DIVERGENCES

In this section we present some of the more intensively studied classes of f -
divergences in terms of their convex functions f . The historic references are
intended to give some hints as to their making.

Some of these and further f -divergences have also been investigated by mem-
bers of the RGMIA. The paper by Barnett, Cerone, Dragomir & Sofo (2002)
may serve as but one example.

(I) The class of χα-divergences
Total Variation Distance

f(u) = |u− 1|
K. Pearson (1900)

χ2(u) = (u− 1)2
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Kagan (1963), Vajda (1973), Boekee (1977)

χα(u) = |u− 1|α , α ≥ 1

(II) Dichotomy Class

Kullback & Leibler (1951)
f(u) = u ln(u)

Likelihood Disparity
f∗(u) = − ln(u)

K. Pearson (1900)
χ2(u) = (u− 1)2

Neyman (1949)
(
χ2

)∗
(u) =

(u− 1)2

u

Liese & Vajda (1987)

fα (u) =





u− 1− ln u for α = 0
αu+1−α−uα

α(1−α) for α ∈ R \ {0, 1}
1− u + u ln u for α = 1

Read & Cressie (1988): fλ(u) = uλ+1−1
λ(λ+1) with λ = α− 1 ∈ R\{−1, 0}

Remark 7: According to Feldman (1972, for α ∈ (0, 1) ) and Leidinger (1996,
for the general case) this class of f -divergences is characterized by the dichotomy
with respect to testing problems.

(II’) Symmetrized Dichotomy Class

Jeffreys (1946)
f̃(u) = (u− 1) ln(u)

Csiszár & Fischer (1962)

f (s)(u) = 1 + u− (
us + u1−s

)
, 0 < s < 1

f̃ (s)(u) =

{
(u− 1) ln(u) for s = 1
1+u−(us+u1−s)

s(1−s) for s ∈ (0, 1) ∪ (1,∞)

(III) Matusita’s Divergences

Matusita (1954)
f

1
2 (u) =

(√
u− 1

)2
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Matusita (1964), Boekee (1977)

fα(u) = |uα − 1| 1α , 0 < α ≤ 1

Renyi’s Divergences 2

(Hellinger (1909): g
1
2 (u) =

√
u )

Bhattacharyya (1946)
− ln(

∑

x∈Ω

√
p(x)q(x))

Chernoff (1952)

− min
0≤α≤1

ln(
∑

x∈Ω

p(x)
(

q(x)
p(x)

)α

)

Renyi (1961)

Rα(Q,P ) =





∑
x∈Ω q(x) ln( q(x)

p(x) ) for α = 1

1
α−1 ln(

∑
x∈Ω p(x)

(
q(x)
p(x)

)α

) for α ∈ (0,∞)\{1}

(IV) Elementary Divergences

Österreicher & Feldman (1981)

ft(u) = max(u− t, 0) , t ≥ 0

(V) Puri-Vincze Divergences

Le Cam (1986), Topsøe (1999)

Φ2(u) =
1
2

(1− u)2

u + 1

Puri & Vincze (1990), Kafka, Österreicher & Vincze (1989)

Φk(u) =
1
2
|1− u|k

(u + 1)k−1
, k ≥ 1

(VI) Divergences of Arimoto-type

Perimeter Divergence: Österreicher (1982), Reschenhofer & Bomze (1991)

f(u) =
√

1 + u2 − 1 + u√
2

2Note that this class doesn’t belong to the family of f -divergences and the
functions gα(u) = uα, α ∈ (0, 1) are concave.
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Perimeter-type Divergences: Österreicher (1996)

fp(u) =





(1 + up)
1
p − 2

1
p−1(1 + u) for p ∈ (1,∞)

|1−u|
2 for p = ∞

Österreicher & Vajda (1997)

fβ(u) =





1
1−1/β

[(
1 + uβ

)1/β − 21/β−1(1 + u)
]

if β ∈ (0,∞)\{1}
(1 + u) ln(2) + u ln(u)− (1 + u) ln(1 + u) if β = 1

|1− u| /2 if β = ∞ .

Remark 8: Lin (1991) proposed his f -divergence in terms of the convex
function

f(u) = ln(2) + u ln
(

u

1 + u

)
.

Owing to

f̃(u) = f(u) + f∗(u) = (1 + u) ln(2) + u ln(u)− (1 + u) ln(1 + u)

Lin’s (in this way) symmetrized f -divergence equals our special case β = 1 .

4 BASIC PROPERTIES (Part 2: Axiomatic)

Characterization Theorem (Csiszár, 1974): Given a mapping I : P2 7→
(−∞,∞] then the following two statements are equivalent

(∗) I is an f -divergence
i.e. there exists an f ∈ F such that I(Q,P ) = If (Q,P ) ∀ (P, Q) ∈ P2

(∗∗) I satisfies the following three properties.
(a) I(Q,P ) is invariant under permutation of Ω ,

(b) Let A = (Ai, i ≥ 1) be a partition of Ω and let

PA = (P (Ai), i ≥ 1) and QA = (Q(Ai), i ≥ 1)

be the restrictions of the probability distributions P and Q to A . Then

I(Q, P ) ≥ I(QA, PA)

with equality holding if Q(Ai)× p(x) = P (Ai)× q(x) ∀ x ∈ Ai , i ≥ 1 and
(c) Let P1, P2 and Q1, Q2 probability distributions on Ω . Then

I(αP1 + (1− α)P2, αQ1 + (1− α)Q2) ≤ αI(P1, Q1) + (1− α)I(P2, Q2) .
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Remark 9: a) Since the proof of the direction (∗) ⇒ (∗∗) will be an im-
mediate consequence of the Representation Theorem (Österreicher & Feldman,
1982) we skip it here and present, instead, a proof of the direction (∗∗) ⇒ (∗)
under the assumption that all probabilities are positive.

b) The properties (b) and/or (c) are crucial for many applications of f -
divergences. We will concentrate on the applications of f -divergences in a later
talk.

Proof of the direction (∗∗) ⇒ (∗) : Consequences of (a):
Let P = (p1, ..., pm), Q = (q1, ..., qm) such that {x ∈ Ω : p (x) q (x) > 0} =

Ω . Then (a) implies that there exists a function v : (0,∞)2 7→ R such that

I(Q,P ) =
m∑

i=1

v(pi, qi) .

We have to show

qf∗
(

p

q

)
= qv(1,

p

q
) = v(p, q) = pv(

q

p
, 1) = pf

(
q

p

)
∀ 0 < p, q < 1 .

Consequences of (b):
Let m ≥ 2, 1 ≤ r ≤ m and 0 < t < m

r and let Ω = {x1, ..., xr, xr+1}. Further-
more let

Pr = ( 1
m , ..., 1

m , 1− r
m ), Qr = ( t

m , ..., t
m , 1− t r

m ), A = {x1, ..., xr} and
A = {A, {xr+1}, ∅, Ω}, P̃r = ( r

m , 1− r
m ), Q̃r = (t r

m , 1− t r
m ) . Then, owing

to
Q (A) · p (x) = t

r

m2
= Q (A) · p (x) ∀ x ∈ A ,

(b) implies

0 = I(Q̃r, P̃r)− I(Pr, Qr) =

=
[
v

( r

m
, t

r

m

)
+ v

(
1− r

m
, 1− t

r

m

)]
−

[
r∑

i=1

v

(
1
m

, t
1
m

)
+ v

(
1− r

m
, 1− t

r

m

)]

= v
( r

m
, t

r

m

)
− rv

(
1
m

, t
1
m

)

and hence

v
( r

m
, t

r

m

)
= rv

(
1
m

, t
1
m

)
.

For r = m this yields v
(

1
m , t 1

m

)
= 1

mv(1, t) and consequently

v
( r

m
, t

r

m

)
=

r

m
r(1, t) .
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Therefore it holds
v (p, q) = pr(1,

q

p
)

for p = r
m and q = t r

m and all 0 < t < m
r , 1 ≤ r ≤ m, m ≥ 2 .

Consequences of (c):
Let 0 < x, y < 1, 0 < p < x, 0 < q < y and p, q, x, y ∈ Q . Furthermore

let Ω = {x1, x2, x3}, P1 = (p, x− p, 1− x), P2 = (x− p, p, 1− x),
Q1 = (q, y − q, 1− y), Q2 = (y − q, q, 1− y) and finally α = 1

2 . Then

αP1+(1−α)P2 =
P1 + P2

2
= (

x

2
,
x

2
, 1−x) and αQ1+(1−α)Q2 =

Q1 + Q2

2
= (

y

2
,
y

2
, 1−y)

and hence (c) implies

∆ = αI(P1, Q1) + (1− α)I(P2, Q2)− I(αP1 + (1− α)P2, αQ1 + (1− α)Q2)

=
I(P1, Q1) + I(P2, Q2)

2
− I(

P1 + P2

2
,
Q1 + Q2

2
)

=
1
2


 pv

(
1, q

p

)
+ (x− p)v

(
1, y−q

x−p

)
+ (1− x)v

(
1, 1−y

1−x

)
+

+(x− p) v
(
1, y−q

x−p

)
+ pv

(
1, q

p

)
+ (1− x)v

(
1, 1−y

1−x

)

−

−
[
xv

(
1,

y

x

)
+ (1− x) v

(
1,

1− y

1− x

)]

= pv

(
1,

q

p

)
+ (x− p)v

(
1,

y − q

x− p

)
− xv

(
1,

y

x

)
≥ 0

and, after dividing by x ,

p

x
v

(
1,

q

p

)
+

x− p

x
v

(
1,

y − q

x− p

)
≥ v

(
1,

y

x

)
.

In view of p
x

q
p + x−p

x
y−q
x−p = y

x the convexity of the function

f : (0,∞) ∩Q 7→ R defined by f(u) = v(1, u)

is verified. Let f also denote the continuous extension of this convex function
from (0,∞)∩Q to (0,∞) . Then f is convex and fulfils, due to its continuity,

v (p, q) = pr(1,
q

p
) = pf(

q

p
)

for all 0 < p, q . By setting f∗(u) = v(u, 1) we similarly obtain

v (p, q) = qr(
p

q
, 1) = qf∗(

p

q
)

for all 0 < p, q .

Remark 10: By this approach the introduction of the ∗-conjugate f∗ of
a convex function f , defined by
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f∗(u) ≡ uf(
1
u

)

is straightforward.
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