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Abstract. This report is devoted to the proof of the global convergence and asymptotic
quadratic convergence of the serial and parallel two-sided block-Jacobi SVD algorithm. In the
serial case, one pair of the off-diagonal blocks with the largest weight given as the sum of
squares of Frobenius norms is annihilated. In the parallel case, using the greedy implementa-
tion of dynamic ordering and having p processors, p pairs of the off-diagonal blocks with largest
weights and disjunct block row and column indices are annihilated in each parallel iteration step.

1 Serial two-sided SVD algorithm

It is assumed in this report that the singular value decomposition is computed for a square
matrix. Hence, when the original matrix is of size m × n, m ≥ n, compute first its QR
decomposition and then apply the SVD algorithm to the n× n factor R.

Let us divide a square matrix A of order n into a w×w block structure with w blocks in each
block row (column). Denote by AIJ the (I, J)th block of size `× `, ` = n/w. Hence, there are
w(w − 1) off-diagonal blocks in A.

Let us assume that, at the initialization step, all diagonal blocks of A were diagonalized by a
series of unitary, two-sided transformations. Diagonal blocks remain then diagonal during the
whole computation.

In the kth step of the two-sided serial block-Jacobi SVD method, let us define weights for

∗Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic, email:
gabriel.oksa@savba.sk
†Department of Communication Engineering and Informatics, University of Electro-Communications, Tokyo,

Japan, email: yusaku.yamamoto@uec.ac.jp
‡Department of Computer Sciences, University of Salzburg, Austria, and Mathematical Institute, Slovak

Academy of Sciences, Bratislava, Slovak Republic, email: marian@cosy.sbg.ac.at



off-diagonal blocks with symmetric block indices (I, J) and (J, I), I 6= J , by

w
(k)
IJ ≡ ‖A

(k)
IJ ‖2F + ‖A(k)

JI ‖2F . (1)

To optimally reduce the off-diagonal Frobenius norm, the pair of off-diagonal blocks with the
maximal weight will be eliminated. Let these off-diagonal blocks have block indices (Xk, Yk)
and (Yk, Xk), i.e.

w
(k)
XkYk

= max
I 6=J

w
(k)
IJ .

Notice that, contrary to the EVD of Hermitian matrices, choosing two off-diagonal blocks with
maximal weight for annihilation is not equivalent to choosing the off-diagonal block A

(k)
SkTk

with

the largest Frobenius norm together with the block A
(k)
TkSk

. In fact, one can easily have

w
(k)
SkTk

< w
(k)
XkYk

,

so that the off-diagonal block with the largest Frobenius norm is not eliminated.

The annihilation is performed by a two-sided unitary transformation

(U (k))HA(k)V (k) = A(k+1),

where the n× n unitary matrices U (k) and V (k) are the matrices of local left and right singular
vectors, respectively, embedded into the identity matrix In of size n. Four blocks of U (k) and
V (k), each of size `, that are different from blocks of In can be chosen so that

(
U

(k)
XkXk

U
(k)
XkYk

U
(k)
YkXk

U
(k)
YkYk

)H (
A

(k)
XkXk

A
(k)
XkYk

A
(k)
YkXk

A
(k)
YkYk

)(
V

(k)
XkXk

V
(k)
XkYk

V
(k)
YkXk

V
(k)
YkYk

)
=

(
A

(k+1)
XkXk

0

0 A
(k+1)
YkYk

)
, (2)

whereby the diagonal blocks A
(k+1)
XkXk

and A
(k+1)
YkYk

are square, diagonal matrices of order ` with
non-negative diagonal elements (local singular values).

Let us define

Ũ (k) ≡
(
U

(k)
XkXk

U
(k)
XkYk

U
(k)
YkXk

U
(k)
YkYk

)
, Ṽ (k) ≡

(
V

(k)
XkXk

V
(k)
XkYk

V
(k)
YkXk

V
(k)
YkYk

)
, (3)

and

Ã(k) ≡
(
A

(k)
XkXk

A
(k)
XkYk

A
(k)
YkXk

A
(k)
YkYk

)
, Σ(k) ≡

(
A

(k+1)
XkXk

0

0 A
(k+1)
YkYk

)
. (4)

Since Eq. (2) is essentially the SVD of the matrix Ã(k), the matrix Ũ (k) and Ṽ (k) is the unitary
matrix of left and right singular vectors of Ã(k), respectively.

To prove the global convergence of the parallel two-sided block-Jacobi SVD method, let us
define the square of the off-diagonal Frobenius norm of A(k) by

‖off(A(k))‖2F ≡
∑

I 6=J
‖A(k)

IJ ‖2F . (5)
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Then:

‖off(A(k+1))‖2F = ‖off(A(k))‖2F − (‖A(k)
XkYk
‖2F + ‖A(k)

YkXk
‖2F )

≤
(

1− 2

w(w − 1)

)
‖off(A(k))‖2F .

Here we used the bound

‖off(A(k))‖2F ≤
w(w − 1)

2
(‖A(k)

XkYk
‖2F + ‖A(k)

YkXk
‖2F ).

Hence, ‖off(A(k))‖2F decreases at least as fast as the geometric sequence with the quotient
(W − 1)/W , W = w(w − 1)/2, and therefore converges to zero. Note that this proof does not
depend on the distribution of singular values of A.

The singular values of Ã(k), i.e., the diagonal elements of the diagonal matrix Â(k+1), can be
computed and located on the diagonal in any order. An important variant of the local SVD is
that with ordered singular values (e.g., non-increasingly) on the diagonal of Â(k+1). This can
be achieved in O(`2) steps using a suitable permutation matrix Π(k):

Ã(k) = Ũ (k)Â(k+1)(Ṽ (k))H

=
(
Ũ (k)(Π(k))H

)(
Π(k)Â(k+1)(Π(k))H

)(
Ṽ (k)(Π(k))H

)H
.

This variant of the SVD of a 2×2 block subproblem will be called the local ordering of diagonal
elements (LODE).

1.1 Asymptotic quadratic convergence

Using these preliminaries, we investigate the asymptotic convergence property of the serial two-
sided block-Jacobi SVD method in a general setting when no a priori assumptions about the
distribution of singular values of A are made.

In the following, we sometimes drop the superscript (k) when there is no reason for misunder-
standing. In that case, we use quantities with hat (like Â) to denote them at the (k + 1)th
step.

First lemma is an obvious modification of Lemma 1 in [6]. It is devoted to the change of the
Frobenius norm of a non-eliminated off-diagonal block in a given iteration step. Notice that one
iteration step changes only two block rows and two block columns X, Y . The lemma considers
the block row and block column X. The situation for the block row and column Y is similar.

Lemma 1 Let AST be the off-diagonal block with the largest Frobenius norm. Consider the
change of an off-diagonal block AXJ (J 6= X, Y ) after elimination of AXY :

ÂXJ = UH
XXAXJ + UH

YXAY J . (6)

Similarly, consider the change of an off-diagonal block AJX (J 6= X, Y ) after elimination of
AY X :

ÂJX = AJXVXX + AJY VY X . (7)

3



Let C = (AXY , AY X). If

(
UY X
VY X

)
of size 2`× ` is bounded as

∥∥∥∥
(
UY X
VY X

)∥∥∥∥
2

≤ ‖C‖F/δ for some

constant δ > 0, then the following inequalities hold:

∣∣∣‖ÂXJ‖2F − ‖AXJ‖2F
∣∣∣ ≤ ‖AST‖

2
F

δ2
‖C‖2F + 2

‖AST‖F
δ

‖C‖F‖AXJ‖F , (8)

∣∣∣‖ÂJX‖2F − ‖AJX‖2F
∣∣∣ ≤ ‖AST‖

2
F

δ2
‖C‖2F + 2

‖AST‖F
δ

‖C‖F‖AJX‖F . (9)

Proof : Since

max{‖UY X‖2, ‖VY X‖2} ≤
∥∥∥∥
(
UY X
VY X

)∥∥∥∥
2

≤ ‖C‖F
δ

,

and both transformations in Eqs. (6) and (7) are one-sided by corresponding blocks of 2×2 block
unitary matrices of local left and right singular vectors, respectively, the changes of Frobenius
norms can be bounded using the same technique as in the proof of Lemma 1 of [6]:

∣∣∣‖ÂXJ‖2F − ‖AXJ‖2F
∣∣∣

≤ ‖UY X‖22 max
{
‖AXJ‖2F , ‖AY J‖2F

}
+ 2‖AXJ‖F‖UY X‖2‖AY J‖F

≤ ‖AST‖
2
F

δ2
‖C‖2F + 2

‖AST‖F
δ

‖C‖F‖AXJ‖F .

Similar approach is valid also for Eq. (9). 2

Next theorem contains our main result—the proof of the asymptotic quadratic convergence
after W = w(w − 1)/2 steps of the serial two-sided block-Jacobi SVD algorithm. Its proof is
almost identical to the proof of Theorem 1 in [6] and only minor adjustments are needed.

Theorem 1 Consider one sweep (W = w(w − 1)/2 eliminations) of the block-Jacobi method.
Without loss of generality, denote the iteration steps by k = 0, 1, . . . ,W −1 and the off-diagonal
blocks chosen at step k for annihilation as A

(k)
XkYk

and A
(k)
YkXk

. Let C(k) = (A
(k)
XkYk

, A
(k)
YkXk

), and

let A
(k)
SkTk

be the off-diagonal block with the maximal Frobenius norm at iteration step k. If all

matrices

(
U

(k)
YkXk

V
(k)
YkXk

)
used at iteration steps k = 0, 1, . . . ,W −1 satisfy

∥∥∥∥∥

(
U

(k)
YkXk

V
(k)
YkXk

)∥∥∥∥∥
2

≤ ‖C(k)‖F/δ

for some constant δ > 0, then

‖off(A(W ))‖2F ≤
w − 2

2

(
2‖off(A(0))‖2F

δ

)2

, (10)

i.e., the block-Jacobi SVD algorithm converges quadratically after every sweep W .

Proof : We show that for each k = 0, 1, . . . ,W , there exists a symmetric index set Pk =
{(I, J), (J, I)|I 6= J} such that |Pk| = 2k and

∑

(I,J)∈Pk

‖A(k)
IJ ‖2F ≤

w − 2

2

(
2‖off(A(0))‖2F − 2‖off(A(k))‖2F

δ

)2

. (11)
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Note that when k = W , the left-hand side becomes ‖off(A(W ))‖2F , and the right-hand side is
smaller than the right-hand side of Eq. (10). So it is sufficient to prove Eq. (11) instead of
Eq. (10). Eq. (11) will be proved by induction. When k = 0, it holds trivially because both
sides are zero. We assume that Eq. (11) holds for some k (0 ≤ k < W ) and show that it also
holds for k + 1.

Let us choose the 2k off-diagonal blocks of A(k) that give k smallest weights, which are computed
according to Eq. (1). Denote their index set by P ′k. It follows from the definition of weights that
the set P ′k is symmetric, i.e., if (I, J) ∈ P ′k then (J, I) ∈ P ′k, and (Xk, Yk) /∈ P ′k. Notice that
Eq. (11) holds also for P ′k. Now, let Pk+1 = P ′k ∪{(Xk, Yk), (Yk, Xk)}. Then Pk+1 is symmetric,
|Pk+1| = 2(k + 1) and the left-hand side of Eq. (11) for k + 1 can be computed as

∑

(I,J)∈Pk+1

‖A(k+1)
IJ ‖2F =

∑

(I,J)∈P ′k

‖A(k+1)
IJ ‖2F + ‖A(k+1)

XkYk
‖2F + ‖A(k+1)

YkXk
‖2F

≤
∑

(I,J)∈P ′k

‖A(k)
IJ ‖2F +

∑

(I,J)∈Qk

∣∣∣‖A(k+1)
IJ ‖2F − ‖A(k)

IJ ‖2F
∣∣∣ ,

(12)

where the symmetric index set Qk ⊆ P ′k is defined as

Qk ≡ {(Xk, J), (J,Xk)|(Xk, J) ∈ P ′k, (Yk, J) /∈ P ′k}
∪ {(Yk, J), (J, Yk)|(Yk, J) ∈ P ′k, (Xk, J) /∈ P ′k}.

To derive the second inequality in Eq. (12), we used the fact that both A
(k+1)
XkYk

and A
(k+1)
YkXk

become

zero due to elimination. We also used the fact that when (I, J) ∈ P ′k\Qk, either A
(k)
IJ is not

affected by the elimination, or both (Xk, J) and (Yk, J) (or (J,Xk) and (J, Yk)) belong to P ′k
and therefore the sum of squares of the Frobenius norms of these two blocks is not changed
after elimination. Hence, the change of A

(k)
IJ contributes to the change of

∑
(I,J)∈P ′k

‖A(k)
IJ ‖2F only

when (I, J) ∈ Qk.

Now we evaluate the second term of Eq. (12). Let us consider the case of I = Xk and J 6= Xk, Yk.

From the assumption ‖U (k)
YkXk
‖2 ≤ ‖C(k)‖F/δ and Lemma 1,

∣∣∣‖A(k+1)
XkJ
‖2F − ‖A(k)

XkJ
‖2F
∣∣∣ ≤
‖A(k)

SkTk
‖2F

δ2
‖C(k)‖2F + 2

‖A(k)
SkTk
‖F

δ
‖C(k)‖F‖A(k)

XkJ
‖F . (13)

Other cases can be treated in similar way (using also ‖V (k)
YkXk
‖2 ≤ ‖C(k)‖F/δ). Noting that

|Qk| < 2w− 4 (since only one of (Xk, J) and (Yk, J) (or (J,Xk) and (J, Yk)) can belong to Qk),
we have

∑

(I,J)∈Qk

‖A(k)
IJ ‖F ≤

√
2w − 4

√ ∑

(I,J)∈Qk

‖A(k)
IJ ‖2F

≤
√

2w − 4

√ ∑

(I,J)∈P ′k

‖A(k)
IJ ‖2F ,

(14)

where we used the Cauchy-Schwarz inequality in the first inequality and Qk ⊆ P ′k in the second
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inequality. By combining Eqs. (13) and (14), we can evaluate the second term of Eq. (12) as

∑

(I,J)∈Qk

∣∣∣‖A(k+1)
IJ ‖2F − ‖A(k)

IJ ‖2F
∣∣∣ ≤

(2w − 4) ‖A(k)
SkTk
‖2F‖C(k)‖2F

δ2
+

+
2
√

2w − 4 ‖A(k)
SkTk
‖F‖C(k)‖F

δ

√ ∑

(I,J)∈P ′k

‖A(k)
IJ ‖2F .

Inserting this upper bound into Eq. (12), and using the estimate

‖A(k)
SkTk
‖F ≤

√
‖A(k)

XkYk
‖2F + ‖A(k)

YkXk
‖2F = ‖C(k)‖F

one finally gets:

∑

(I,J)∈Pk+1

‖A(k+1)
IJ ‖2F ≤



√

2w − 4 ‖C(k)‖2F
δ

+

√ ∑

(I,J)∈P ′k

‖A(k)
IJ ‖2F




2

≤
(√

2w − 4 ‖C(k)‖2F
δ

+

√
2w − 4 (2‖off(A(0))‖2F − 2‖off(A(k))‖2F )

2δ

)2

=
w − 2

2

(
2‖off(A(0))‖2F − 2‖off(A(k+1))‖2F

δ

)2

.

Here we used Eq. (11) in the second inequality, which is valid also for P ′k since by its construc-
tion: ∑

(I,J)∈P ′k

‖A(k)
IJ ‖2F ≤

∑

(I,J)∈Pk

‖A(k)
IJ ‖2F .

The last equality comes from

2‖off(A(k+1))‖2F = 2‖off(A(k))‖2F − 2‖C(k)‖2F .

The final upper bound shows that Eq. (11) holds also for k+ 1 and this completes the proof.2

1.2 Well-separated singular values

Now we identify the constant δ for well-separated singular values. Let A be a square matrix of
order n with q different singular values:

σ1 = · · · = σs1 > σs1+1 = · · · = σs2 > · · · > σsq−1+1 = · · · = σsq ,

where ni = si − si−1, 1 ≤ i ≤ q, is the multiplicity of σsi (defining s0 = 0 and sq = n). Let the
gap d be defined as

d ≡ min
i 6=j
|σsi − σsj |. (15)

Writing
A(k) = diag(A(k)) + off(A(k)), (16)

we can make following assumptions at some iteration step k:
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A1 The off-diagonal Frobenius norm of A(k) is small enough:

‖off(A(k))‖F ≡
√∑

I 6=J
‖A(k)

IJ ‖2F <
d

4
. (17)

A2 The main diagonal of A(k) is ordered (e.g., non-increasingly) by suitable row and column
permutations so that the diagonal elements of A(k) affiliated with the same multiple
singular value occupy successive positions on the diagonal.

A3 The partition of A(k) is such that the diagonal elements affiliated with the same multiple
singular value are confined to one diagonal block. 2

When d = 0, Eq. (17) gives ‖off(A(k))‖F = 0 and, consequently, A(k) = σ1I, so that the matrix
is already diagonal. Therefore we assume q > 1.

Since all transformations are unitary, the singular values of A are the same as those of A(k).
But then, according to Eq. (16), off(A(k)) is a perturbation of diag(A(k)), and it is bounded
in the Frobenius norm by d/4 because of A1. According to the Hoffman-Wielandt theorem
[5, 7], which is valid also for singular values, for each i, 1 ≤ i ≤ q, there are exactly ni diagonal
elements of A(k) that lie around σsi in the circle of radius less than d/4. Recall that according
to the assumption A2 these diagonal elements occupy successive positions on the diagonal, i.e.

they form clusters Ĉl
(k)

i , 1 ≤ i ≤ q. Note that, at iteration step k, two different clusters are
separated at least by d/2.

Now we show that these clusters are stabilized, i.e., a diagonal element that lies in the circle
around σsi can not ‘jump’ into a circle around σsj for j 6= i.

Lemma 2 Under assumptions A1–A3, let a cluster Ĉl
(k)

i , 1 ≤ i ≤ q, lie inside the diagonal

block A
(k)
tt for some fixed t, 1 ≤ t ≤ w. Assume that the algorithm uses the LODE in each

iteration step. Then, for all iteration steps r, r ≥ k, ni elements of Ĉl
(r)

i occupy successive po-

sitions on the diagonal inside the same diagonal block A
(r)
tt . Consequently, the distance between

any two different clusters remains at least d/2.

Proof : The proof is identical to that of Lemma 2 in [6]. 2

The stabilization of clusters of diagonal elements means that the diagonal elements of Ã(r)

and Â(r+1) approximate the same singular values of A with the same number of corresponding
diagonal elements for r ≥ k. Moreover, due to the LODE, the diagonal elements of both Ã(r)

and Â(r+1) are ordered in the same way, e.g. non-increasingly.

Finally, next lemma gives the value of constant δ.

Lemma 3 In the case of well-separated singular values (simple and/or multiple) of A, under
assumptions A1–A3 above and using the LODE, the constant δ in Theorem 1 can be set to
δ =
√

2d/4 where d is the gap defined by Eq. (15).
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Proof : Let us analyze one iteration step r → r + 1, r ≥ k. Recall that the 2 × 2 block
subproblem from Eq. (2) has the form:

(
A

(r)
XX A

(r)
XY

A
(r)
Y X A

(r)
Y Y

)(
V

(r)
XX V

(r)
XY

V
(r)
Y X V

(r)
Y Y

)
=

(
U

(r)
XX U

(r)
XY

U
(r)
Y X U

(r)
Y Y

)(
A

(r+1)
XX 0

0 A
(r+1)
Y Y

)
.

Applying the Hermitian operator, using the fact that both Ũ (r) and Ṽ (r) are unitary (see

Eq. (3)), and noting that the diagonal blocks A
(r)
XX , A

(r)
Y Y , A

(r+1)
XX and A

(r+1)
Y Y are diagonal and

real, one gets the additional relation

(
A

(r)
XX A

(r)H
YX

A
(r)H
XY A

(r)
Y Y

)(
U

(r)
XX U

(r)
XY

U
(r)
Y X U

(r)
Y Y

)
=

(
V

(r)
XX V

(r)
XY

V
(r)
Y X V

(r)
Y Y

)(
A

(r+1)
XX 0

0 A
(r+1)
Y Y

)
.

Now take the equations for the block (2, 1) from both relations:

A
(r)
Y Y V

(r)
Y X − U

(r)
Y XA

(r+1)
XX = −A(r)

Y XV
(r)
XX ,

A
(r)
Y YU

(r)
Y X − V

(r)
Y XA

(r+1)
XX = −A(r)H

XY U
(r)
XX .

This system can be written as the Sylvester equation [3] for

(
U

(r)
Y X

V
(r)
Y X

)
:

(
0 A

(r)
Y Y

A
(r)
Y Y 0

)(
U

(r)
Y X

V
(r)
Y X

)
−
(
U

(r)
Y X

V
(r)
Y X

)
A

(r+1)
XX = −

(
A

(r)
Y XV

(r)
XX

A
(r)H
XY U

(r)
XX

)
. (18)

Notice that the blocks A
(r)
Y Y and A

(r+1)
XX are diagonal and their eigenvalues are diagonal elements,

which are all non-negative. Hence, the spectrum of the first matrix on the left-hand side of

Eq. (18), denoted by E(r) =

(
0 A

(r)
Y Y

A
(r)
Y Y 0

)
, consists of diagonal elements of A

(r)
Y Y , whereby

each diagonal element is present with the plus and minus sign. Recall that according to the
construction of matrix partition, the eigenvalues of A

(r)
Y Y and A

(r+1)
XX approximate different sin-

gular values of A. Using Lemma 2, the spectra of E(r) and A
(r+1)
XX are disjoint, and the entire

spectrum of A
(r+1)
XX lies, on the real axis, either to the right of the entire spectrum of E(r), or

between its positive and negative part. Thus the distance between the spectra of E(r) and
A

(r+1)
XX is at least d/2. Therefore, we can apply the Davis-Kahan lemma [1] stating that the

Sylvester equation (18) has the unique solution

(
U

(r)
Y X

V
(r)
Y X

)
and its spectral norm is bounded by

∥∥∥∥∥

(
U

(r)
Y X

V
(r)
Y X

)∥∥∥∥∥
2

≤ 2

d

∥∥∥∥∥−
(
A

(r)
Y XV

(r)
XX

A
(r)H
XY U

(r)
XX

)∥∥∥∥∥
2

=
2

d

∥∥∥∥∥

(
A

(r)
Y X 0

0 A
(r)H
XY

)(
V

(r)
XX

U
(r)
XX

)∥∥∥∥∥
2

≤ 2

d

∥∥∥∥∥

(
A

(r)
Y X 0

0 A
(r)H
XY

)∥∥∥∥∥
F

∥∥∥∥∥

(
V

(r)
XX

U
(r)
XX

)∥∥∥∥∥
2

=
2

d
‖C(r)‖F

∥∥∥∥∥

(
V

(r)
XX

U
(r)
XX

)∥∥∥∥∥
2

.
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However,

∥∥∥∥∥

(
V

(r)
XX

U
(r)
XX

)∥∥∥∥∥

2

2

=

∥∥∥∥∥(V
(r)H
XX U

(r)H
XX )

(
V

(r)
XX

U
(r)
XX

)∥∥∥∥∥
2

= ‖V (r)H
XX V

(r)
XX + U

(r)H
XX U

(r)
XX‖2

≤ ‖V (r)H
XX V

(r)
XX‖2 + ‖U (r)H

XX U
(r)
XX‖2 ≤ 2,

so that ∥∥∥∥∥

(
U

(r)
Y X

V
(r)
Y X

)∥∥∥∥∥
2

≤ 2
√

2

d
‖C(r)‖F .

Hence, δ =
√

2d/4 and the asymptotic quadratic convergence proved in Theorem 1 is ensured. 2

1.3 Clusters of singular values

If A has singular values that can be divided into one or more tight clusters, the quantity d in
Eq. (15) can be tiny. Then the assumption A1 in subsection 1.2 becomes useless in practice
because it requires that ‖off(A(k))‖F is even smaller than d. For such a situation, Hari [4]
suggested to use another spectral gap dc which can be much larger than d.

Let us group the singular values of A into q sets of very close ones (clusters):

Cl i = {σsi−1+1, . . . , σsi}, 1 ≤ i ≤ q,

where s0 = 0, sq = n. As above, ni = si − si−1 ≥ 1 is the number of eigenvalues inside the ith
cluster Cl i. For each cluster, define its average value,

ci ≡
1

ni

ni∑

j=1

σsi−1+j

and assume that ci’s are ordered decreasingly, c1 > c2 > . . . > cq.

Let A = UΣV H be the SVD of A and write

Σ = Σc + ΣE, where Σc = diag(c1, . . . , c1, . . . , cq, . . . , cq)

with ci, 1 ≤ i ≤ q, repeated ni times. Then

A = Ac + E, Ac = UΣcV
H , E = UΣEV

H .

Ac has multiple singular values ci, 1 ≤ i ≤ q, and ‖E‖F is tiny for tight clusters. In particular,
‖E‖2 is the half-width of the largest cluster and (see [4])

‖E‖F =

√√√√
q∑

i=1

ni∑

j=1

|σsi−1+j − ci|2.

9



As in [4], let us define A
(k)
c and E(k) for k ≥ 1 by

A(k+1)
c ≡ (U (k))HA(k)

c V (k), E(k+1) ≡ (U (k))HE(k)V (k),

where A
(1)
c = Ac, E

(1) = E. Then A(k) = A
(k)
c + E(k) and since a two-sided unitary transfor-

mation does not change the Frobenius norm of a matrix, ‖E(k)‖F = ‖E‖F , k ≥ 1.

Let us define the gap for clusters by

dc ≡ min
i 6=j
|ci − cj|, 1 ≤ i, j ≤ q. (19)

Now we formulate asymptotic assumptions for the case of clusters of singular values at the
iteration step k.

B1 ‖off(A(k))‖F and ‖E(k)‖F = ‖E‖F are small quantities:

‖off(A(k))‖F <
dc
8
, ‖E(k)‖F <

dc
8
.

B2 The main diagonal of A(k) is ordered (e.g., non-increasingly) by suitable row and column
permutations so that the diagonal elements of A(k) affiliated with the cluster of singular
values Cl i, 1 ≤ i ≤ q, occupy successive positions on the diagonal and can be grouped

into the cluster Ĉl
(k)

i , 1 ≤ i ≤ q.

B3 The partition of A(k) is such that the diagonal elements affiliated with the same cluster
Cl i of singular values are confined to one diagonal block. 2

Note that the assumption ‖E(k)‖F < dc/8 is essentially the assumption about the tightness of
clusters of A’s singular values.

Since ‖E(k)‖2 ≤ ‖E(k)‖F , B1 implies

Cl i ⊂
(
ci −

dc
8
, ci +

dc
8

)
, 1 ≤ i ≤ q.

Our aim is to show that the clusters Ĉl
(k)

i , 1 ≤ i ≤ q, of diagonal elements of A(k) are stabilized.
The approach is similar to that of subsection 1.2.

Lemma 4 Under assumptions B1–B3, let a cluster Ĉl
(k)

i , 1 ≤ i ≤ q, lie inside the diagonal

block A
(k)
tt for some fixed t, 1 ≤ t ≤ w. Assume that the algorithm uses the LODE in each

iteration step. Then, for all iteration steps r, r ≥ k, ni elements of Ĉl
(r)

i occupy successive po-

sitions on the diagonal inside the same diagonal block A
(r)
tt . Consequently, the distance between

any two different clusters remains at least dc/2.

Proof : The proof is identical to that of Lemma 4 in [6]. 2

Finally, the value of the constant δ can be identified.
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Lemma 5 For clusters of singular values of A, under assumptions B1–B3 above and using the
LODE, the constant δ in Theorem 1 can be set to δ =

√
2dc/4 where dc is the gap for clusters

defined by Eq. (19).

Proof : Repeating the proof of Lemma 3, albeit working with ci and cj instead of σsi and
σsj , respectively, we get the value dc/2 for the lower bound of distance between spectra of
corresponding two diagonal blocks in the Sylvester equation (18). Then repeat the remaining
estimates of Lemma 3. 2

2 Parallel two-sided SVD algorithm

Let us divide a square matrix A of order n into a w × w block structure using the blocking
factor w = 2p, w ≥ 4, where p is the number of processors. Thus, w denotes the number of
blocks in each block row (column) and each block has size `×` where ` = n/(2p). Usually, each
processor contains 2 block columns or 2 block rows, but the exact data layout is not significant
for the following discussion at all.

At the beginning of a parallel iteration step k, 2p off-diagonal blocks of A(k) with block indices
(Xk1 , Yk1), (Yk1 , Xk1), . . . , (Xkp , Ykp), (Ykp , Xkp), Xki < Yki for all i, are eliminated using the
greedy implementation of parallel dynamic ordering (GIPDO). It is appropriate here to briefly
recall how the GIPDO works. The pairs of off-diagonal blocks are ordered decreasingly with
respect to their weights w

(k)
IJ measured by the sum of squares of their Frobenius norms,

w
(k)
IJ = ‖A(k)

IJ ‖2F + ‖A(k)
JI ‖2F , I 6= J.

After choosing the first pair, additional p−1 pairs are chosen for annihilation with a decreasing
weight in a compatible way—i.e., each new pair must have its block-row and block-column
indices different from all already chosen blocks. This ensures the selection of p 2 × 2 block
subproblems that can be solved in parallel.

After the GIPDO is computed, p chosen pairs together with corresponding diagonal blocks are
met in p processors (one pair per processor), and p 2×2-block SVD subproblems are computed
in parallel. At parallel iteration step k, the processor i, 1 ≤ i ≤ p, solves the local subproblem
of size 2`× 2`,

(
U

(k)
Xk,iXk,i

U
(k)
Xk,iYk,i

U
(k)
Yk,iXk,i

U
(k)
Yk,iYk,i

)H (
A

(k)
Xk,iXk,i

A
(k)
Xk,iYk,i

A
(k)
Yk,iXk,i

A
(k)
Yk,iYk,i

)(
V

(k)
Xk,iXk,i

V
(k)
Xk,iYk,i

V
(k)
YkiXk,i

V
(k)
Yk,iYk,i

)

=

(
A

(k+1)
Xk,iXk,i

0

0 A
(k+1)
Yk,iYk,i

)
,

where the diagonal blocks A
(k+1)
Xk,iXk,i

and A
(k+1)
Yk,iYk,i

are square, diagonal matrices of order `, because
all diagonal blocks are diagonal after the first parallel iteration step and remain so during the
whole computation.
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Notice that the matrix

U
(k)
k,i ≡

(
U

(k)
Xk,iXk,i

U
(k)
Xk,iYk,i

U
(k)
Yk,iXk,i

U
(k)
Yk,iYk,i

)

is the unitary matrix of left singular vectors, and

V
(k)
k,i ≡

(
V

(k)
Xk,iXk,i

V
(k)
Xk,iYk,i

V
(k)
Yk,iXk,i

V
(k)
Yk,iYk,i

)

is the unitary matrix of right singular vectors. The diagonal matrix

Σ
(k)
k,i ≡

(
A

(k+1)
Xk,iXk,i

0

0 A
(k+1)
Yk,iYk,i

)

contains singular values of the matrix

A
(k)
k,i ≡

(
A

(k)
Xk,iXk,i

A
(k)
Xk,iYk,i

A
(k)
Yk,iXk,i

A
(k)
Yk,iYk,i

)
.

The singular values in any 2 × 2 block subproblem and in any processor i.e., the elements of
Σ

(k)
k,i , can be computed and located on the diagonal in any order. An important variant of the

local SVD is that with ordered singular values (non-increasingly or non-decreasingly). This
variant of the SVD of a 2 × 2 block subproblem will be called the local ordering of diagonal
elements (LODE); see also [6].

The proof of global convergence is very similar to the serial case. Since

‖off(A(k))‖2F ≤
w(w − 1)

2
(‖A(k)

Xk,1Yk,1
‖2F + ‖A(k)

Yk,1Xk,1
‖2F ),

one has

‖off(A(k+1))‖2F = ‖off(A(k))‖2F −
p∑

i=1

(‖A(k)
Xk,iYk,i

‖2F + ‖A(k)
Yk,iXk,i

‖2F )

≤ ‖off(A(k))‖2F − (‖A(k)
Xk,1Yk,1

‖2F + ‖A(k)
Yk,1Xk,1

‖2F )

≤
(

1− 2

w(w − 1)

)
‖off(A(k))‖2F .

2.1 Update of an off-diagonal block

Suppose that in a given parallel iteration step k (its index is omitted here) the off-diagonal
blocks AXiYi and AYiXi

were chosen for annihilation by GIPDO. Our first step is to derive an
upper bound for the change of the squared Frobenius norm of an arbitrary block that is not
eliminated at parallel step k. Such a block can be written as AXiXj

, AXiYj , AYiXj
or AYiYj ,

where i 6= j.
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Let us consider the update of block rows Xi and Yi. We need to evaluate the update of two
off-diagonal blocks which will be combined in the subsequent update of two block columns:

ÃXiXj
= UH

XiXi
AXiXj

+ UH
YiXi

AYiXj
,

ÃXiYj = UH
XiXi

AXiYj + UH
YiXi

AYiYj . (20)

Secondly, the update of two block columns Xj, Yj follows from Eq. (20):

ÂXiXj
= ÃXiXj

VXjXj
+ ÃXiYjVYjXj

= UH
XiXi

AXiXj
VXjXj

+ UH
YiXi

AYiXj
VXjXj

+UH
XiXi

AXiYjVYjXj
+ UH

YiXi
AYiYjVYjXj

.

In the following lemma, we bound the change of AXiXj
, but the same bound is applicable to

other three cases as well.

Lemma 6 Consider the change of an off-diagonal block AXiXj
that was not eliminated in a

given parallel iteration step k. Denote the changed block by ÂXiXj
, and let Ci = (AXiYi , AYiXi

).
Additionally, let AST be the off-diagonal block with the largest Frobenius norm, ‖AST‖F =

maxI 6=J ‖AIJ‖F . If there exists a constant δ > 0 such that

∥∥∥∥
(
UYiXi

VYiXi

)∥∥∥∥
2

≤ ‖Ci‖F/δ for 1 ≤ i ≤ p,

then the following inequality holds:
∣∣∣‖ÂXiXj

‖2F − ‖AXiXj
‖2F
∣∣∣ ≤ ‖AST‖2F

δ2

{
(1 +

√
2)‖Ci‖2F + (2 +

√
2)‖Cj‖2F

}

+2
‖AST‖F

δ

(
‖Ci‖F +

√
2‖Cj‖F

)
‖AXiXj

‖F . (21)

Proof : Using the triangle inequality, we can bound the left-hand side of Eq. (21) as
∣∣∣‖ÂXiXj

‖2F − ‖AXiXj
‖2F
∣∣∣ ≤

∣∣∣‖ÃXiXj
‖2F − ‖AXiXj

‖2F
∣∣∣+
∣∣∣‖ÂXiXj

‖2F − ‖ÃXiXj
‖2F
∣∣∣ . (22)

Using Eq. (20), the first term in the right-hand side can be bounded using the same technique
as in the proof of Lemma 1 of [6] as

∣∣∣‖ÃXiXj
‖2F − ‖AXiXj

‖2F
∣∣∣

≤ ‖UYiXi
‖22 max

{
‖AXiXj

‖2F , ‖AYiXj
‖2F
}

+ 2‖AXiXj
‖F‖UYiXi

‖2‖AYiXj
‖F

≤ ‖AST‖
2
F

δ2
‖Ci‖2F + 2

‖AST‖F
δ

‖Ci‖F‖AXiXj
‖F . (23)

Similarly, the second term can be bounded as
∣∣∣‖ÂXiXj

‖2F − ‖ÃXiXj
‖2F
∣∣∣

≤ ‖VYjXj
‖22 max

{
‖ÃXiXj

‖2F , ‖ÃXiYj‖2F
}

+ 2‖ÃXiXj
‖F‖VYjXj

‖2‖ÃXiYj‖F . (24)

To bound the right-hand side, we need to evaluate ‖ÃXiXj
‖F and ‖ÃXiYj‖F . Using again

Eq. (20), we have

‖ÃXiXj
‖F ≤ ‖AXiXj

‖F + ‖UYiXi
‖2‖AYiXj

‖F

≤ ‖AXiXj
‖F +

‖Ci‖F
δ
‖AST‖F . (25)
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On the other hand, since the transformation is unitary, we have

‖ÃXiXj
‖2F + ‖ÃYiXj

‖2F = ‖AXiXj
‖2F + ‖AYiXj

‖2F ,

which leads to
‖ÃXiXj

‖2F ≤ ‖AXiXj
‖2F + ‖AYiXj

‖2F ≤ 2‖AST‖2F . (26)

Similarly,
‖ÃXiYj‖2F ≤ ‖AXiYj‖2F + ‖AYiYj‖2F ≤ 2‖AST‖2F . (27)

Putting Eqs. (26) and (27) into the first term of Eq. (24) and putting Eq. (25) and (27) into
the second term of Eq. (24) gives

∣∣∣‖ÂXiXj
‖2F − ‖ÃXiXj

‖2F
∣∣∣

≤ ‖Cj‖
2
F

δ2
· 2‖AST‖2F + 2

(
‖AXiXj

‖F +
‖Ci‖F
δ
‖AST‖F

)
· ‖Cj‖F

δ
·
√

2‖AST‖F

= 2
‖AST‖2F
δ2

(
‖Cj‖2F +

√
2 ‖Ci‖F‖Cj‖F

)
+ 2
√

2
‖AST‖F

δ
‖Cj‖F‖AXiXj

‖F

≤ ‖AST‖
2
F

δ2

{
2‖Cj‖2F +

√
2
(
‖Ci‖2F + ‖Cj‖2F

)}

+2
√

2
‖AST‖F

δ
‖Cj‖F‖AXiXj

‖F , (28)

where we used 2ab ≤ a2 + b2 in the last inequality. Substituting Eqs. (23) and (28) into (22)
leads to

∣∣∣‖ÂXiXj
‖2F − ‖AXiXj

‖2F
∣∣∣ ≤ ‖AST‖2F

δ2

{
(1 +

√
2)‖Ci‖2F + (2 +

√
2)‖Cj‖2F

}

+2
‖AST‖F

δ

(
‖Ci‖F +

√
2‖Cj‖F

)
‖AXiXj

‖F ,

which completes the proof. 2

2.2 Asymptotic quadratic convergence

Using Lemma 6, we derive a quadratic convergence bound for the parallel block Jacobi SVD
algorithm with GIPDO.

Theorem 2 Consider the parallel two-sided block-Jacobi SVD algorithm with GIPDO using
the blocking factor w = 2p. Without loss of generality, denote the parallel iteration steps by k =
0, 1, . . ., and the off-diagonal blocks chosen for elimination at step k by A

(k)
Xk,1Yk,1

, A
(k)
Yk,1Xk,1

, . . .,

A
(k)
Xk,pYk,p

, A
(k)
Yk,pXk,p

, where A
(k)
Xk,1Yk,1

and A
(k)
Yk,1Xk,1

are the off-diagonal blocks that give the largest

weight. Let A
(k)
SkTk

be the off-diagonal block with the largest Frobenius norm. Additionally, let

C
(k)
k,i = (A

(k)
Xk,iYk,i

, A
(k)
Yk,iXk,i

), 1 ≤ i ≤ p, and let Qk,`, ` even, be the index set of the `/2 pairs of
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off-diagonal blocks with smallest weights at step k (notice that they are chosen in a symmetric
way—i.e., if (I, J) ∈ Qk,`, then (J, I) ∈ Qk,`). Define the index set Pk recursively as follows:

P0 = ∅,
Pk+1 = Qk,|Pk| ∪ {(Xk,1, Yk,1), (Yk,1, Xk,1), . . . , (Xk,p, Yk,p), (Yk,p, Xk,p)} , (29)

where |Pk| denotes the number of elements in Pk. Then there exists a step W , w − 1 ≤ W ≤
w(w− 2)/2 + 1, for which PW equals the set of indices of all off-diagonal blocks. Furthermore,

suppose that there exists a constant δ > 0 such that

∥∥∥∥∥

(
U

(k)
Yk,iXk,i

V
(k)
Yk,iXk,i

)∥∥∥∥∥
2

≤ ‖C(k)
k,i ‖F/δ holds for all

1 ≤ i ≤ p and k = 0, 1, . . . ,W − 1. Then,

‖off(A(W ))‖2F ≤ 3(w − 2)

(
2‖off(A(0))‖2F

δ

)2

, (30)

that is, the parallel two-sided block-Jacobi SVD algorithm with the GIPDO converges quadrati-
cally after W iterations.

Proof: We first show the existence of W . From the definition, P1 = {(X0,1, Y0,1), (Y0,1, X0,1),
. . ., (X0,p, Y0,p), (Y0,p, X0,p)}, so |P1| = 2p = w. Assume that |Pk| < w(w − 1), the number of
off-diagonal blocks, for some k ≥ 1. Then, actually Pk ≤ w(w − 1) − 2 because Pk has even
number of elements by construction. This means that (Xk,1, Yk,1) and (Yk,1, Xk,1), which are
the indices of off-diagonal blocks with the largest weight, do not belong to Qk,|Pk|. Thus, Pk+1

has at least two more elements than Qk,|Pk| and |Pk+1| ≥ |Qk,|Pk||+ 2 = |Pk|+ 2. On the other
hand, it is clear from Eq. (29) that |Pk+1| ≤ |Qk,|Pk|| + 2p = |Pk| + 2p. Hence, the increase
in the number of elements of Pk at each step is between 2 and 2p. In the worst case scenario,
the increase at each step is constantly 2, so |P ′k| = 2p + 2(k − 1) for k = 1, 2, . . .. In this case,
|Pk| = w(w − 1) is reached at step k = w(w − 2)/2 + 1. In the best case scenario, in which

Qk,|Pk| ∩ {(Xk,1, Yk,1), (Yk,1, Xk,1), . . . , (Xk,p, Yk,p), (Yk,p, Xk,p)} = ∅
holds at every step, |P ′k| = 2kp for k = 1, 2, . . .. In this case, |Pk| = w(w− 1) is reached at step
k = w − 1. Other cases are in between.

To prove Eq. (30), we show an alternative inequality

∑

(I,J)∈Pk

‖A(k)
IJ ‖2F ≤

(
2 +
√

2

2

)2

(w − 2)

(
2‖off(A(0))‖2F − 2‖off(A(k))‖2F

δ

)2

(31)

for k = 0, 1, . . . ,W . Note that when k = W , the left-hand side becomes ‖off(A(W ))‖2F , while
the right-hand side is smaller than the right-hand side of Eq. (30). So Eq. (30) follows directly
from Eq. (31). We prove Eq. (31) by induction. When k = 0, both sides are zero, so the
inequality holds trivially. We assume that Eq. (31) holds for some k < W and show that it also
holds for k+ 1. In the following, we omit the superscript (k) for the parallel iteration step and
denote the quantities at step k and k+ 1 by symbols without and with a hat, respectively. We
also write C

(k)
k,i , Xk,i and Yk,i as Ci, Xi and Yi, respectively.

Let us define the index set P ′k by

P ′k = Qk,|Pk|\ {(X1, Y1), (Y1, X1), . . . , (Xp, Yp), (Yp, Xp)} . (32)
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Then, the left-hand side of Eq. (31) at parallel step k + 1 can be evaluated as follows:

∑

(I,J)∈Pk+1

‖ÂIJ‖2F =
∑

(I,J)∈P ′k

‖ÂIJ‖2F +

p∑

i=1

(‖ÂXiYi‖2F + ‖ÂYiXi
‖2F )

≤
∑

(I,J)∈P ′k

‖AIJ‖2F +
∑

(I,J)∈P ′k

∣∣∣‖ÂIJ‖2F − ‖AIJ‖2F
∣∣∣ , (33)

where we used ‖ÂXiYi‖2F = ‖ÂYiXi
‖2F = 0 for 1 ≤ i ≤ p.

Let (I, J) ∈ P ′k be fixed. Since {X1, Y1, . . . , Xp, Yp} is a permutation of {1, 2, . . . , 2p}, for each
I, there exists exactly one index i (1 ≤ i ≤ p) such that I = Xi or I = Yi. We denote such i
by π(I). Using the same mapping π, we can denote the index j (1 ≤ j ≤ p) such that J = Xj

or J = Yj by π(J). Then, the off-diagonal block AIJ is updated by a block rotation specified
by (Xπ(I), Yπ(I)) from the left and by another block rotation specified by (Xπ(J), Yπ(J)) from the
right. Note that π(I) 6= π(J), because AIJ is not a block chosen for elimination. Hence, we
have from Eq. (21),

∣∣∣‖ÂIJ‖2F − ‖AIJ‖2F
∣∣∣ ≤ 2

‖AST‖F
δ

(‖Cπ(I)‖F +
√

2 ‖Cπ(J)‖F )‖AIJ‖F

+
‖AST‖2F
δ2

{
(1 +

√
2)‖Cπ(I)‖2F + (2 +

√
2)‖Cπ(J)‖2F

}
. (34)

Now, consider the sum of ‖Cπ(I)‖2F over P ′k. Since P ′k ⊆ {(I, J) | 1 ≤ I, J ≤ 2p, π(I) 6= π(J)},
we can bound it by a sum over the set {(I, J) | 1 ≤ I, J ≤ 2p, π(I) 6= π(J)}. Furthermore,
there exist exactly two values of I such that π(I) = i for each i and exactly two values of J
such that π(J) = j for each j. Hence, we can rewrite the sum over the set {(I, J) | 1 ≤ I, J ≤
2p, π(I) 6= π(J)} as a sum over the set {(i, j) | 1 ≤ i, j ≤ p, i 6= j} multiplied by 4. Thus,

∑

(I,J)∈P ′k

‖Cπ(I)‖2F ≤
2p∑

I=1

2p∑

J=1
π(I)6=π(J)

‖Cπ(I)‖2F

= 4

p∑

i=1

p∑

j=1
j 6=i

‖Ci‖2F

= 4(p− 1)

p∑

i=1

‖Ci‖2F = 2(w − 2)

p∑

i=1

‖Ci‖2F . (35)

Similarly,
∑

(I,J)∈P ′k

‖Cπ(J)‖2F ≤ 2(w − 2)

p∑

i=1

‖Ci‖2F . (36)
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Using these results, we can now bound the second term in the right-hand side of Eq. (33). By
inserting Eq. (34) into Eq. (33), we have

∑

(I,J)∈P ′k

∣∣∣‖ÂIJ‖2F − ‖AIJ‖2F
∣∣∣

≤ ‖AST‖F
δ

∑

(I,J)∈P ′k

(2 ‖Cπ(I)‖F + 2
√

2 ‖Cπ(J)‖F )‖AIJ‖F

+
‖AST‖2F
δ2

∑

(I,J)∈P ′k

{
(1 +

√
2)‖Cπ(I)‖2F + (2 +

√
2)‖Cπ(J)‖2F

}

≤ ‖AST‖F
δ


2

√ ∑

(I,J)∈P ′k

‖Cπ(I)‖2F + 2
√

2

√ ∑

(I,J)∈P ′k

‖Cπ(J)‖2F



√ ∑

(I,J)∈P ′k

‖AIJ‖2F

+
‖AST‖2F
δ2



(1 +

√
2)

∑

(I,J)∈P ′k

‖Cπ(I)‖2F + (2 +
√

2)
∑

(I,J)∈P ′k

‖Cπ(J)‖2F





≤ 1

δ

√√√√
p∑

i=1

‖Ci‖2F · (4 + 2
√

2)
√
w − 2

√√√√
p∑

i=1

‖Ci‖2F
√ ∑

(I,J)∈P ′k

‖AIJ‖2F

+
1

δ2

(
p∑

i=1

‖Ci‖2F

)
· (6 + 4

√
2)(w − 2)

(
p∑

i=1

‖Ci‖2F

)

=
2(2 +

√
2)
√
w − 2

δ

(
p∑

i=1

‖Ci‖2F

)√ ∑

(I,J)∈P ′k

‖AIJ‖2F

+
(2 +

√
2)2(w − 2)

δ2

(
p∑

i=1

‖Ci‖2F

)2

, (37)

where we used the Cauchy-Schwarz inequality in the second inequality. In the third inequality,
we used

‖AST‖F ≤
√
‖AST‖2F + ‖ATS‖2F ≤

√
‖AX1Y1‖2F + ‖AY1X1‖2F

≤

√√√√
p∑

i=1

(‖AXiYi‖2F + ‖AYiXi
‖2F ) =

√√√√
p∑

i=1

‖Ci‖2F
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to bound the first factor of the first and second term, and Eqs. (35) and (36) to bound the
sums over P ′k. Inserting Eq. (37) into Eq. (33) finally gives:

∑

(I,J)∈Pk+1

‖ÂIJ‖2F ≤
∑

(I,J)∈P ′k

‖AIJ‖2F +
2(2 +

√
2)
√
w − 2

δ

(
p∑

i=1

‖Ci‖2F

)√ ∑

(I,J)∈P ′k

‖AIJ‖2F

+
(2 +

√
2)2(w − 2)

δ2

(
p∑

i=1

‖Ci‖2F

)2

=





√ ∑

(I,J)∈P ′k

‖AIJ‖2F +
(2 +

√
2)
√
w − 2

2δ
· 2

p∑

i=1

‖Ci‖2F





2

≤
(

2 +
√

2

2

)2

(w − 2)

(
2‖off(A(0))‖2F − 2‖off(A(k))‖2F + 2

∑p
i=1 ‖Ci‖2F

δ

)2

=

(
2 +
√

2

2

)2

(w − 2)

(
2‖off(A(0))‖2F − 2‖off(A(k+1))‖2F

δ

)2

, (38)

where we used, in the third inequality, the induction assumption given by Eq. (31):

√ ∑

(I,J)∈P ′k

‖AIJ‖2F ≤
√ ∑

(I,J)∈Qk,|Pk|

‖AIJ‖2F

≤
√ ∑

(I,J)∈Pk

‖AIJ‖2F

≤ 2 +
√

2

2

√
w − 2 · 2‖off(A(0))‖2F − 2‖off(A(k))‖2F

δ
.

The last equality follows from

2‖off(A(k+1))‖2F = 2‖off(A(k))‖2F − 2

p∑

i=1

‖Ci‖2F .

Hence, Eq. (38) shows that the induction assumption holds also for k + 1. 2

Theorem 2 states that the quadratic reduction of the off-norm occurs after w(w−2)/2+1 parallel
iterations, at the latest. This is the worst case scenario, for which the number of iterations
required for quadratic convergence is almost the same as that for the serial algorithm. On the
other hand, in the best case scenario, the quadratic convergence occurs after only w−1 steps. In
this case, the number of iterations required for quadratic convergence is w/2 = p times smaller
than that for the serial algorithm.

The identification of a constant δ is the same as for serial algorithm. Hence, under assumptions
A1–A3 (or B1–B3) for well-separated singular values (or clusters) made in Section 1, it is
δ =
√

2d/4 (or δ =
√

2dc/4).
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