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Abstract
At the core of this talk is a simple geometric object, namely the risk

set of a statistical testing problem on the one hand and f -divergences,
which were introduced by Csiszár (1963) on the other. f -divergences are
measures for the ’hardness’of a testing problem depending on a convex
real valued function f on the interval [0,∞). The choice of this parameter
f can be adjusted so as to match the needs for specific applications.

After presenting the definition, mentioning the basic properties of a
risk set and giving the integral geometric representation of f -divergences
the talk will focus on the perimeter of the risk set, which has proved useful
for the construction of least favourable distributions in robust statistics.
The f -divergences based on the perimeter of the risk set and investigated
in Österreicher & Vajda (2003) turn out to be metric divergences corre-
sponding to a class of entropies introduced by Arimoto (1971).

Without essential loss of insight we restrict ourselves to discrete prob-
ability distributions and note that the extension to the general case relies
strongly on the Lebesgue-Radon-Nikodym Theorem.

1 RISK SETS

Let Ω = {x1, x2, ...} be a set with at least two elements, P(Ω) the set of all
subsets of Ω and P the set of all probability distributions P = (p(x) : x ∈
Ω) on Ω .

A pair (P,Q) ∈ P2 of probability distributions is called a (simple versus
simple) testing problem. A subset A ⊂ Ω is called a (simple) test. It is associated
with the following decision rule: one decides in favour of the hypothesis Q if x ∈
A is observed and in favour of P if x ∈ Ac = Ω\A is observed.

Then P (A) and Q(Ac) is the probability of type I error (probability of
a decision in favour of Q although P is true), and the probability of type II
error (probability of a decision in favour of P although Q is true) respectively.
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Two probability distributions P and Q are called orthogonal ( P ⊥ Q )
if there exists a test A ⊂ Ω such that P (A) = Q(Ac) = 0 . (In this extreme
case only one observation is needed to decide between P and Q and the
probabilities of committing both errors vanish.)

A testing problem (P,Q) ∈ P2 is called least informative if P = Q and is
called most informative if P ⊥ Q .

Let 0 ≤ π < 1 and let (π, 1−π) be a prior distribution on the set {P,Q} ⊂
P associated with the testing problem (P,Q) . Then the quantity

πP (A) + (1− π)Q(Ac)

is called Bayes risk of the test A with respect to the prior distribution (π, 1−
π) . Since the Bayes risk enables us to order the pairs (P (A), Q(Ac)) , A ∈
P(Ω) of error probabilities, it is straightforward to ask for tests which provide
the minimal Bayes risk. In fact, as can be easily checked, it holds

πP (A) + (1− π)Q(Ac) =
∑
x∈Ω

min (πp(x), (1− π) q(x)) +

+
∑
x∈Ω

(πp(x)− (1− π) q(x)) 1A∩{πp>(1−π)q}

+
∑
x∈Ω

((1− π) q(x)− πp(x)) 1Ac∩{(1−π)q>πp}

where the two latter terms are nonnegative and vanish iff {(1− π) q > πp} ⊆
A ⊆ {(1− π) q ≥ πp} .
In order to summarize let t = π

1−π , At = {q > tp} , A+
t = {q ≥ tp} and

let bt(Q,P ) =
∑
x∈Ω min (q(x), tp(x)) be the (1 + t)-multiple of the minimal

Bayes risk with respect to the prior distribution ( t
1+t ,

1
1+t ) . Then

Q(Ac) + tP (A) ≥ bt(Q,P ) ∀ A ∈ P(Ω)

with equality iff At ⊆ A ⊆ A+
t .

Definition 1: Let (P,Q) ∈ P2 be a testing problem. Then the set

R(P,Q) = co {(P (A) , Q (Ac)) : A ∈ P(Ω), P (A) +Q (Ac) ≤ 1}

is called the risk set of the testing problem (P,Q) , whereby ’co’ stands for
’the convex hull of’.

The geometric object of the risk set R(P,Q) provides a qualitative measure
for the deviation of P and Q . In fact, the family of risk sets define a uniform
structure on the set P . Cf. Linhart & Österreicher (1985).
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Properties of Risk Sets
(R1) R(P,Q) is a convex subset of the triangle ∆ =

{
(α, β) ∈ [0, 1]2 : α+ β ≤ 1

}
containing the diagonal D =

{
(α, β) ∈ [0, 1]2 : α+ β = 1

}
. More specifically it

holds
D ⊆ R(P,Q) ⊆ ∆

with equality iff P = Q and P ⊥ Q respectively.

(R2) Let t ≥ 0 and bt(Q,P ) be the (1 + t)-multiple of the minimal Bayes risk

with respect to the prior distribution
(

t
1+t ,

1
1+t

)
. Then the risk set R(P,Q) of

a testing problem is determined by its family of supporting lines from below,
namely

β = bt(Q,P )− t · α , t ≥ 0 .

Consequence of (R2): Let (P,Q) and (P̃ , Q̃) be two testing problems.
Then

R(P,Q) ⊇ R(P̃ , Q̃) ⇔ bt(Q,P ) ≤ bt(Q̃, P̃ ) ∀ t ≥ 0 .

Simple Example (Testing a fair tetrahedron versus a biased one):

Ω = { 1, 2, 3, 4 }
P = ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Q = ( 5
8 ,

1
4 ,

1
8 , 0 )

Although the number of simple tests for a set Ω with m elements is |P(Ω)| =
2m we need only m+1 pairs (P (A), Q(Ac)), A ∈ P(Ω) in order to determine
the risk set R(P,Q) economically. It is advisable to proceed as follows:

Order the set Ω so that the likelihood ratios are decreasing, i.e.

q(x1)

p(x1)
≥ q(x2)

p(x2)
≥ ... ≥ q(xm)

p(xm)
,

take the tests

Ai =

{
∅ for i = 0

{1, ..., i} for i ∈ {1, ...,m}
,

assign the set S = { (P (Ai), Q(Aci ))} : i ∈ {0, 1, ...,m} } of the pairs of error
probabilities and form the convex hull co(S) of this set. Then co(S) = R(P,Q) .
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For our example the tests Ai and the corresponding pairs (P (Ai), Q(Aci )) of
error probabilities are given in the following table.

Ai (P (Ai), Q(Aci ))

∅ (0, 1)

{1} ( 1
4 ,

3
8 )

{1, 2} ( 1
2 ,

1
8 )

{1, 2, 3} ( 3
4 , 0)

Ω (1, 0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 1: Risk set of above testing problem

Remark 1: For special case P = ( 1
m , ...,

1
m ) and Q = (q1, ..., qm) , such

that q1 > q2 > ... > qm , the lower boundary of the set

co {(P (Ai), Q(Ai)) : i ∈ {0, ...,m} } ,

is the so-called Lorenz curve. It was already used by Lorenz (1905) in order to
measure the inequality of the distribution of wealth within a given population.
The translation of the following quotation from Lorenz’ paper into our context
describes exactly the purpose of the risk set.

"We wish to be able to say at which point a community is placed between the
two extremes, equality on the one hand, and the ownership of all wealth by one
individual on the other."
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2 f-DIVERGENCES

2.1 GEOMETRIC APPROACH

In order to define a quantity for the ’hardness’of a testing problem (P,Q) we
proceed, after the qualitative step which assigns the ’hardness’ of a testing
problem (P,Q) to the ’bulkiness’of the corresponding risk set R(P,Q) , by a
first quantitative step.

To this end let bt(Q,P ) be the (1 + t)-multiple of the minimal Bayes risk
with respect to ( t

1+t ,
1

1+t ) of the testing problem (P,Q) and let bt(P, P ) =
min(1, t) be the corresponding quantity for the least informative testing problem
(P, P ) . Then the differences

min(1, t)− bt(Q,P ) , t ≥ 0

compare the ’bulkiness’of the risk set R(P,Q) with that of the risk set R(P, P ) =
D of the least informative testing problem. The parameters t ≥ 0 are the
absolute values of the slopes of the supporting lines of the risk set from below.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 2: Differences min(1, t)− bt(Q,P )

In a second quantitative step weights for the parameters t ≥ 0 are assigned
in terms of a suitable monotone function F : [0,∞) 7→ [−∞,∞) so that the
integral ∫ ∞

0

[min(1, t)− bt(Q,P )] dF (t)

provides an essential extension of the above family of measures of the ’bulkiness’
of the risk set. Due to the richness of the class of parameters F these weighted
measures can be adjusted so as to match a given type of application.
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The Perimeter of the Risk Set
In this subsection we are going to describe an interesting special case related

to the well-known fact from integral geometry that the perimeter of a finite
convex subset of R2 is the integral of its breadths.

Since max(1, t)−bt(Q,P ) is the vertical part of the the breadth of R(P,Q) in
direction of the vector ( t

1+t ,
1

1+t ) of the prior distribution,

(max(1, t)− bt(Q,P )) cos(ϕ(t)) with ϕ(t) = arctan(t) ∈ [0,
π

2
)

is its breadth. Since the breadth of the risk set with respect to ϕ ∈ [π2 , π)

is (cos(π − ϕ) + sin(π − ϕ)) and
∫ π
π
2

(cos(π − ϕ) + sin(π − ϕ)) dϕ = 2 the peri-

meter Per(R(P,Q)) of the risk set is

Per(R(P,Q)) =

∫ π/2

0

[
max(1, arctan(ϕ))− barctan(ϕ)(Q,P )

]
cos(ϕ)dϕ+ 2 =

=

∫ ∞
0

[max(1, t)− bt(Q,P )] (1 + t2)−3/2dt+ 2 ,

whereby, by virtue of cos(ϕ(t))dϕ(t)
dt = (1 + t2)−3/2 , the density 1[0,π/2)(ϕ) of

uniform weight is transformed to the density (1+t2)−3/2 in the parametrization
by t ∈ [0,∞) . Since the perimeter of the risk set R(P, P ) = D of the least
informative testing problem is obviously

Per(R(P, P )) =

∫ ∞
0

[max(1, t)−min(1, t)] (1 + t2)−3/2 + 2 = 2
√

2

the difference

Per(R(P,Q))− Per(R(P, P )) =

∫ ∞
0

[min(1, t)− bt(Q,P )] (1 + t2)−3/2dt

is the special case of our family of measures given by the density (1 + t2)−3/2 .

The above approach to define a family of measures of the ’hardness’ of a
testing problem, which stresses modelling, relies on the following representation
theorem for so-called f -divergences If (Q,P ) given by Feldman & Österreicher
(1981). In this setting the weight function F introduced above is the right-hand
side derivative D+f of a continuous convex function f on the interval [0,∞) .

Representation Theorem:

If (Q,P ) =

∫ ∞
0

[min(1, t)− bt(Q,P )] dD+f(t) .

In the following section we will present the original definition of f -divergences
by Csiszár (1963), a number of examples and the basic properties.
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2.2 DEFINITION AND BASIC PROPERTIES

Let F0 be the set of convex functions f : [0,∞) 7→ (−∞,∞] continuous
at 0 (i.e. f(0) = limu↓0 f(u) ) satisfying f(1) = 0 and (without loss of
generality) f(u) ≥ 0 ∀ u ∈ [0,∞) and let D+f denote the right-hand side
derivative of f . Further, let f∗ ∈ F0 , defined by

f∗(u) = uf

(
1

u

)
, u ∈ (0,∞) ,

the ∗-conjugate (convex) function of f and let a function f ∈ F satisfying
f∗ ≡ f be called ∗-self conjugate. Then

x · f(0) = x · f
(

0
x

)
= 0 · f∗

(
x
0

)
for x ∈ (0,∞)

y · f∗ (0) = y · f∗
(

0
y

)
= 0 · f(y0 ) for y ∈ (0,∞)

0 · f
(

0
0

)
= 0 · f∗

(
0
0

)
= 0 .

Definition 2 (Cziszár (1963), Ali & Silvey (1966)): Let P,Q ∈ P . Then

If (Q,P ) =
∑
x∈Ω

p(x)f

(
q(x)

p (x)

)
is called the f -Divergence of the probability distributions Q and P .

Examples: Total Variation Distance ( f(u) = |u− 1| = f∗(u) )

If (Q,P ) = V (Q,P ) =
∑
x∈Ω

|q(x)− p(x)|

Squared Hellinger Distance ( f(u) = (
√
u− 1)2 = f∗(u) )

If (Q,P ) = H2(Q,P ) =
∑
x∈Ω

(√
q(x)−

√
p(x)

)2

χ2-Divergence ( f(u) = (u− 1)
2
, f∗(u) = (1−u)2

u )

If (Q,P ) =
∑
x∈Ω

(q(x)− p(x))
2

p(x)
= I∗f (P,Q)

Kullback-Leibler Divergence ( f(u) = u ln(u) , f∗(u) = − ln(u) )

If (Q,P ) =
∑
x∈Ω

q(x) ln

(
q(x)

p (x)

)
= I∗f (P,Q)
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Squared Perimeter Distance ( f(u) =
√

1 + u2 − (1 + u)/
√

2 = f∗(u) )

If (Q,P ) =
∑
x∈Ω

√
p2(x) + q2(x)−

√
2

Remark 2: Note that

If (Q,P ) = f(0) · P ({x : q (x) = 0}) + f∗(0) ·Q ({x : p (x) = 0}) +

+
∑

x: q(x)·p(x)>0

p(x)f

(
q(x)

p (x)

)
and that P ({x : q (x) = 0}) is the amount of singularity of the distribution P with
respect to Q and Q ({x : p (x) = 0}) is the amount of singularity of the
distribution Q with respect to P . Therefore f(0) = ∞ and f∗ (0) =
∞ imply If (Q,P ) = ∞ unless {x ∈ Ω : q (x) · p (x) > 0} = Ω , i.e. all
probabilities are positive.

Range of Values Theorem (Vajda (1972)): Let f ∈ F0 . Then

0 ≤ If (Q,P ) ≤ f(0) + f∗(0) ∀ Q,P ∈ P .

In the first inequality, equality holds if / iff Q = P . The latter provided that

(i) f is strictly convex at 1 .

In the second, equality holds if / iff Q ⊥ P . The latter provided that

(iii) f(0) + f∗(0) <∞ .

Characterization Theorem (Csiszár, 1974): Given a mapping I : P2 7→
(−∞,∞] then the following two statements are equivalent

(∗) I is an f -divergence
i.e. there exists an f ∈ F0 such that I(Q,P ) = If (Q,P ) ∀ (P,Q) ∈ P2

(∗∗) I satisfies the following three properties.

(a) I(Q,P ) is invariant under permutation of Ω ,

(b) Let A = (Ai, i ≥ 1) be a partition of Ω and let

PA = (P (Ai), i ≥ 1) and QA = (Q(Ai), i ≥ 1)

be the restrictions of the probability distributions P and Q to A . Then

I(Q,P ) ≥ I(QA, PA)

with equality holding if Q(Ai)× p(x) = P (Ai)× q(x) ∀ x ∈ Ai , i ≥ 1 and

(c) Let α ∈ [0, 1] and P1, P2 and Q1, Q2 probability distributions on Ω .
Then

I(αP1 + (1− α)P2, αQ1 + (1− α)Q2) ≤ αI(P1, Q1) + (1− α)I(P2, Q2) .
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2.3 METRIC f-DIVERGENCES

Let us now concentrate on those (further) properties of the convex function f which
allows for metric divergences.

As we know already If (Q,P ) fulfils the basic property (M1) of a metric
divergence, namely

If (Q,P ) ≥ 0 ∀ P,Q ∈ P with equality iff Q = P , (M1)

provided (i) f is strictly convex at 1 .

In addition If (Q,P ) is symmetric, i.e. satisfies

If (Q,P ) = If (P,Q) ∀ P,Q ∈ P (M2)

iff (ii) f is ∗-self conjugate, i.e. satisfies f ≡ f∗ .
It turns out that, in addition to the rather natural conditions (i) and (ii),

the condition (iii) f(0) + f∗(0) <∞ , which is used to characterize Q ⊥ P , is
crucial for metric divergences. However, since it cannot be expected in general
that an f -divergence fulfils the triangle inequality we have to look for suitable
powers to do so.

From the following two theorems given in Kafka, Österreicher & Vincze
(1991) Theorem 4 offers a class (iii,α), α ∈ (0, 1] of conditions which are suffi -
cient for guaranteeing the power [If (Q,P )]

α to be a distance on P . Theorem
5 determines, in dependence of the behaviour of f in the neighbourhoods
of 1 and of g(u) = f(0) (1 + u)− f(u) in the neighbourhood of 0 , the
maximal α providing a distance.

Theorem 4: Let α ∈ (0, 1] and let f ∈ F0 fulfil, in addition to (ii), the
condition

(iii,α) the function h(u) = (1−uα)
1
α

f(u) , u ∈ [0, 1) , is non-increasing.

Then
ρα(Q,P ) = [If (Q,P )]α

satisfies the triangle inequality

ρα(Q,P ) ≤ ρα(Q,R) + ρα(R,P ) ∀ P,Q,R ∈ P , (M3,α)

which effects, together with (M1) and (M2), that ρα is a metric.

Remark 3: The conditions (ii) and (iii,α) imply both (i) and (iii).

Theorem 5: Let (i) and (ii) hold true and let α0 ∈ (0, 1] be the maximal
α for which (iii,α) is satisfied. Then the following statement concerning α0

holds. If for some k0, k1, c0, c1 ∈ (0,∞)

f(0) · (1 + u)− f(u) ∼ c0 · uk0

f(u) ∼ c1 · |u− 1|k1
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then k0 ≤ 1, k1 ≥ 1 and α0 ≤ min (k0, 1/k1) ≤ 1 .

Finally we present a version of the refinement of the Range of Values The-
orem which matches the assumptions (i), (ii) and (iii) which are necessary to
allow for metric divergences.

Refinement of the Range of Values Theorem (Feldman & Österreicher
(1989): Let f ∈ F0 satisfy the conditions (i),(ii) and (iii), x ∈ [0, 1] and let
the function cf : [0, 1] 7→ [0,∞) be defined by

cf (x) = (1 + x) f

(
1− x
1 + x

)
.

Then
cf (V (Q,P )/2) ≤ If (Q,P ) ≤ cf (1) · V (Q,P )/2,

where cf satisfies cf (0) = 0 and cf (1) = 2f(0) <∞ and is convex, strictly
increasing and continuous on [0, 1] .

Remark 4: Note that this theorem implies that any metric defined in terms
of an f -divergence is equivalent to the total variation distance.

3 CONSTRUCTIONOF LEAST FAVOURABLE
DISTRIBUTIONS

Huber & Strassen (1973) proved the existence of least favourable pairs of distri-
butions for composite versus composite testing problems under the assumption
that both hypotheses are majorized by two-alternating capacities and character-
ized them in terms of f -divergences with strict convex functions f . The author
restated the definition of least favourable pairs in terms of risk sets and demon-
strated (1982) that their perimeter can be used to construct least favourable
pairs. For further references in this context see e.g. Österreicher (1983).

For an application of the perimeter of the risk set for goodness of fit tests
see Reschenhofer & Bomze (1991).

Definition 3: Let

R(P,Q) = ∩Q′∈QR(P,Q′)

be the risk set of a simple versus composite testing problem, which is a pair (P,Q) of
an element P and a nontrivial subset Q of P .

We will illustrate the construction of a least favourable distribution Q∗ ∈
Q for the simple case

Q = U(Q, ε) = { Q′ ∈ P : V (Q,Q′)/2 ≤ ε }
= { Q′ ∈ P : Q′(A) ≤ Q(A) + ε ∀ A ∈ P(Ω) }
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of a total variation neighbourhood.

Theorem 7: Let P,Q ∈ P and let Q = U(Q, ε) , ε ∈ (0, 1) be a total vari-
ation neighbourhood of Q which does not contain P . Let furthermore R(P,Q)+
(0, ε) be the risk set of the simple versus simple testing problem (P,Q) having
been shifted upwards by the amount ε and let finally t

¯
< 1 < t̄ be the ab-

solute values of the slopes of the supporting lines onto R(P,Q)+(0, ε) through
the points (1, 0) and (1, 0) respectively.

Then the least favourable distribution Q∗ ∈ Q for (P,U(Q, ε)) is given
by the censored version

q∗(x) = max ( t
¯
· p(x),min(q(x), t̄ · p(x)) )

of the density q .

Simple Example (Continuation): In order to illustrate Theorem 7 let us
continue our simple example from Section 1 by replacing the distribution Q by
the total variation neighbourhood

Q = U(Q,
1

8
) =

{
Q′ ∈ P : Q′(A) ≤ Q(A) +

1

8
∀ A ∈ P(Ω)

}
.

10.750.50.250

1

0.75

0.5

0.25

0

x

y

x

y

Fig. 3: Modification of the risk set

When comparing the distribution Q in the center of the variation neighborhood Q =
U(Q, 1

8 ) with the least favourable distribution Q∗ ∈ Q

Q = ( 5
8 ,

1
4 ,

1
8 , 0 )

Q∗ = ( 4
8 ,

1
4 ,

1
8 ,

1
8 )
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notice that the probability 1
8 is shifted from the most probable element to the

least probable.

Remark 5: For the special case Ω = {1, ..., n} , P =
(

1
n , ...,

1
n

)
and Q =

(q1, ..., qn) the above theorem has the following econometric interpretation.

If the distribution Q of income (with total amount 1) of a population
of n individuals has to be redistributed so that the inequality in income is
minimized under the constraint that the portion of income of no group of the
population is cut or raised more than ε , one has to proceed as follows: If a
person’s income exceeds a certain amount t̄/n , her or his income has to be cut to
this bound. The total amount ε of income collected that way must be allotted
to those persons, whose income is smaller than a certain lower bound t

¯
/n so

that every person is guaranteed the minimal income t
¯
/n .

The principle of income transfer was first clearly described by Dalton (1920)
as follows:

"If there are only two income receivers and a transfer of income takes place
from the richer to the poorer, inequality is diminished. There is, indeed, an
obvious limiting condition. The transfer must be so large as to more than reverse
the relative position of the two income receivers, and it will produce its maximum
result, that is to say, create equality, when it is equal to the half of difference
between the two incomes. And, we may safely go further and say that, however
great the number of income receivers and whatever the amount of their incomes,
any transfer of the two of them or, in general, any series of such transfers,
subject to the above condition, will diminish inequality. It is possible that, in
comparing two distributions, in which both the total of the income of the number
of the income receivers are the same, we may see that one might be able to be
evolved from the other by means of a series of transfers of this kind. In such a
case we would say that the inequality of one was less than that of another."

4 DIVERGENCES OF PERIMETER-TYPE

If both the arc length of the lower boundary of the risk set and the diagonal D are
measured in terms of the lp-norm in R2 then the ordinary case ( p = 2 ) can
be extended to the perimeter-type family

Ifp (Q,P ) =

{ ∑
x∈Ω [qp(x) + pp(x)]

1/p − 21/p for p ∈ (1,∞)

1
2

∑
x∈Ω |q(x)− p(x)| for p =∞

(cf. Österreicher (1996)). In taking the (1− 1/p)-th part of the corresponding
convex function (1 + up)

1/p − 21/p−1(1 + u) we make a second step of gener-
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alization yielding the family of f -divergences defined by the convex functions

fp(u) =


1

1−1/p

[
(1 + up)

1/p − 21/p−1(1 + u)
]

if p ∈ (0,∞)\{1}

(1 + u) ln(2) + u ln(u)− (1 + u) ln(1 + u) if p = 1

|u− 1| /2 if p =∞ ,

where both cases p = 1 and p = ∞ are limiting cases. As a matter of fact,
this family relates due to

fp(u) = (1 + u)
[
h1/p(1/2)− h1/p(u/(1 + u))

]
, u ∈ [0,∞),

to the class of entropies investigated by Arimoto (1971)

hα(t) =


1

1−α

[
1−

(
t1/α + (1− t)1/α

)α]
if α ∈ (0,∞)\{1}

− [t ln t+ (1− t) ln(1− t)] if α = 1

min(t, 1− t) if α = 0 .

Note that our class of f -divergences includes, in addition to the case for p >
1 already discussed for the case p = 1

2 ( f1/2(u) = (
√
u − 1)2 ), the squared

Hellinger distance H2(Q,P ) and for p = 1

If1(Q,P ) = I(Q,
P +Q

2
) + I(P,

P +Q

2
)

= 2H(
P +Q

2
)− [H(P ) +H(Q)] ,

where I and H is the classical Kullback-Leibler divergence ( f -divergence for
f(u) = u lnu), respectively Shannon’s entropy.

Theorem 8 (Österreicher & Vajda (2003)): This class of f -divergence pro-
vides the distances[

Ifp(Q,P )
]min(p, 12 )

for p ∈ (0,∞) and V (Q,P )/2 for p =∞ .

For further results, including those in connection with possible applications, we
refer to the paper mentioned above.
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