Research Interests & Cooperations:
- Holographic methods (cooperation with University of Vienna, Faculty of Physics, Physics of Functional Materials)
- Photorefraction in photopolymers and polymer composites (e.g. Absorption changes under UV illumination in doped PMMA)
- Two wave mixingHolographic scattering
- Holographic storage
- Preparation, optimization and characterization of photo(neutron)refractive photopolymers (cooperation with University Vienna, Faculty of Physics, Physics of Functional Materials; Key Laboratory of Weak-Light Nonlinear Photonics, Institute of Physics and TEDA Applied Physics School, Nankai University, Tianjin, China; Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan), (e.g. Photopolymerization-Induced Two-Beam Coupling and Light-Induced Scattering in Polymethyl Methacrylate)
- Neutron optics from holographically generated structures (cooperation with University Vienna, Faculty of Physics, Physics of Functional Materials; Institut Laue Langevin, Grenoble, France; Paul Scherrer Institut, Villigen, Switzerland) (e.g. Neutron Physics with Photorefractive Materials)
- Mirrors and beamsplitters for low energy neutrons
- Neutron spectroscopy
- Cold neutron interferometry (cooperation with University Vienna, Faculty of Physics, Physics of Functional Materials, Institute Laue Langevin, Grenoble, France; Paul Scherrer Instute, Villigen, Switzerland; GKSS Research Center, Geesthacht, Germany), ( Interferometer for cold neutrons)
- Coherence properties of low energy neutronsNeutron interferometry at SANS: Phase measurements Neutron diffraction on holographically generated structures (cooperation with University Vienna, Faculty of Physics, Physics of Functional Materials)
- Small angle neutron scattering (SANS) from light induced gratings, at Institute Laue Langevin, Grenoble, France; Paul Scherrer Instute, Villigen, Switzerland; GKSS Research Center, Geesthacht, Germany
- Polymers:
- Pure polymers, eg. Polymethylmethacrylate
- Composites of Polymers and nanoparticles: Holographic polymer-dispersed nanoparticles (cooperation with University of Electro-Communications (UEC), Department of Engineering Science, Tokyo, Japan and Institute Jožef Stefan (IJS), Department of synthesis of materials, Ljubljana, Slovenia)
- Composites of Polymers and Liquid crystals: Holographic polymer-dispersed liquid crystals (cooperation with Institute Jožef Stefan (IJS), Department of synthesis of materials, Ljubljana, Slovenia) Ultra small angle neutron scattering (USANS) at Institute Laue Langevin, Grenoble, France
- Composites of Polymers and nanoparticles: Holographic polymer-dispersed nanoparticles nanoparticles (cooperation with University of Electro-Communications (UEC), Department of Engineering Science, Tokyo, Japan and Institute of Atomic and Subatomic Physics, University of Technology, Vienna, Austria (ATI))
- UV, Visible, Near-infrared, and Mid-infrared, Raman, Brillouin Spectroscopy of
- Liquids, Binary mixtures, Ionic liquids: (cooperation with University of Split, Croatia, Faculty of Science and Faculty of Science and Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Paris, France, University of Vienna), (e.g. Ultrasonics 1: Speed of Ultrasound, Isentropic Compressibility and Related Properties of Liquids)
- Polymers, Photopolymers, Composites of Polymers and nanoparticles
- Black Silicon (cooperation with Harvard University, Department of Physics, Cambridge, USA)
Teaching at the University of Salzburg:
2007/08
437.018 W Physikalische Rechenübungen (Kurs 2), 1 std., VU
437.019 W Physikalische Rechenübungen (Kurs 3), 1 std., VU
631.005 W Rechencrashkurs für Erstsemestrige (Kurs 5), 1 std., VU
631.006 W Rechencrashkurs für Erstsemestrige (Kurs 6) , 1 std., VU
428.510 S Physikalisches Praktikum I, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR
2008/09
428.510 S Physikalisches Praktikum I, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR
2009/10
428.510 S Physikalisches Praktikum I, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR
2010/11
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 2, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 3, 4 std., PR
428.530 W Ringpraktikum, 4 std., PR
2011/12
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 1, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 2, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 3, 4 std., PR
445.101 S Elektronikpraktikum, Kurs 1, 2 std., UE
445.101 S Elektronikpraktikum, Kurs 2, 2 std., UE
2012/13
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 1, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 2, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 3, 4 std., PR
445.101 S Elektronikpraktikum, Kurs 1, 2 std., UE
445.101 S Elektronikpraktikum, Kurs 2, 2 std., UE
2013/14
437.058 W Physik (für Molekularbiologen) 2 std., VO
437.060 W Physik (für Biologen und Geologen) 4 std., VO
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 2, 4 std., PR
428.518 S Physikalisches Praktikum III (Struktur der Materie), Kurs 3, 4 std., PR
2014/15
437.058 W Physik (für Molekularbiologen), 2 std., VO
437.060 W Physik (für Biologen und Geologen), 4 std., VO
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR 2015/16
437.058 W Physik (für Molekularbiologen), 2 std., VO
437.060 W Physik (für Biologen und Geologen), 4 std., VO
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR
2016/17
012.131 W Einführung in die computergestützte Messdatenerfassung, 3 std., VU
630.400 W Physik (für Molekularbiologen), 2 std., VO
665.092 W Physik (für Biologen und Geologen), 4 std., VO
428.518 S Physikalisches Praktikum III (Struktur der Materie), 4 std., PR
603.621 S Kulturgeschichte (Christian Doppler: Leben und Werk (Ringvorlesung), 2 std., VO
2017/18
012.181 W Einführung in die computergestützte Messdatenerfassung, 3 std., VU
428.518 W Physikalisches Praktikum III (Struktur der Materie), 4std., PR
630.400 W Physik (für Biologen und Geologen), 4std., VO
665.092 W Physik (für Molekulare Biowissenschaften), 2 std., VO
012.034 S Physikalisches Praktikum III, 4 std., PR
Publications: (2009-2017)
Peer-reviewed articles:
[1] M. Fally, M. Bichler, M. A. Ellabban, I. Drevenšek-Olenik, C. Pruner, H. Eckerlebe, and K.P. Pranzas, Diffraction Gratings for Neutrons from Polymers and Holographic Polymer-Dispersed Nanocomposites, J. Opt. A: Pure Appl. Opt. 11, 024019, (2009),
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.3448v1.pdf
[2] A. Asenbaum, B. Kezic, C. Pruner, F. Sokolic, and E. Wilhelm, Brillouin Scattering in Ethanol-Water Mixtures, AIP Conf. Proc. 1267, 821, (2010).
[3] A. Asenbaum, C. Pruner, A. V. Svanidze, E. Wilhelm, S. G. Lushnikov, and A. Schulte, Brillouin Scattering in Lysozyme Solutions, AIP Conf. Proc. 1267, 666, (2010).
[4] M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. Drevenšek Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, Neutron Optical Beam Splitter from Holographically Structured Nanoparticle-Polymer Composites, Phys. Rev. Lett. 105, 123904, (2010), Highlighted as Editor’s suggestion, http://prl.aps.org/abstract/PRL/v105/i12/e123904, http://arxiv.org/abs/1001.5425v1, Selected as Research Highlight at Paul Scherrer Institut,
http://www.psi.ch/num/2010
[5] M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. Drevenšek Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, Neutron optical elements from light-responsive nanoparticle-polymer composites, Vir. J. Nan. Sci. & Tech. 22, 14, (2010),
http://www.vjnano.org/dbt/dbt.jsp?KEY=VIRT01&Volume=22&Issue=14#STRUCTURAL PROPERTIES
[6] A. Asenbaum, C. Pruner, W. Schröer, K. Plätzer, L. Bieler, H. Brandstetter, W. Schirmacher, A. Schulte, and E. Wilhelm, Rayleigh and Brillouin Scattering in a Lysozyme-Water Mixture: An Unusual Behavior around 343 K, J. Mol. Liq. 158, 7-12, (2011),
http://dx.doi.org/10.1016/j.molliq.2010.09.008
[7] J. Klepp, C. Pruner, M. A. Ellabban, Y. Tomita, H. Lemmel, H. Rauch, M. Fally, Neutronoptical gratings from nanoparticle-polymer composites, Nucl. Instrum. Meth. A 634, S59, (2011),
http://dx.doi.org/10.1016/j.nima.2010.06.360,
http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.3407v1.pdf
[8] A. Asenbaum, C. Pruner, H. Kabelka, A. Philipp, E. Wilhelm, R. Spendlingwimmer, A. Gebauer, R. Buchner, Influence of various commercial water treatment processes on the electric conductivity of several drinking waters, J. Mol. Liq. 160, 144-149, (2011),
http://dx.doi.org/10.1016/j.molliq.2011.03.007
[9] M. Fally, J. Klepp, C. Pruner, Y. Tomita, H. Eckerlebe, J. Kohlbrecher, R.A. Rupp, Holographic gratings for cold neutron optics, In: Information Photonics (IP), 2011 ICO International Conference, 1 – 2 (2011),
http://dx.doi.org/10.1109/ICO-IP.2011.5953716
[10] M.J. Sher, Y.T. Lin, E. Mazur, C. Pruner, A. Asenbaum, Black Silicon: Optical Hyperdoping of Silicon for Optoelectronic Devices Operating at Photon Energies below the Bandgap, IEEE Conf. Proc. (Information Photonics 05-2011).
[11] J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K.H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings, Phys. Rev. A 84, 013621, (2011),
http://pra.aps.org/abstract/PRA/v84/i1/e013621,
http://arxiv.org/abs/1106.1362
[12] A. V. Svanidze, I. P. Koludarov, S. G. Lushnikov, A. Asenbaum, C. Pruner, F. M. Aliev, C. C. Chang, L. J. Kan, Specific features of the temperature behavior of lysozyme diffusivity in solutions with different protein concentrations, J. Mol. Liq., 168, 7-11, (2012),
http://dx.doi.org/10.1016/j.molliq.2012.01.015
[13] J. Klepp, I. Drevenšek Olenik, S. Gyergyek, C. Pruner, R. A. Rupp, M. Fally, Towards polarizing beam splitters for cold neutrons using superparamagnetic diffraction gratings, J. Phys.: Conf. Ser. IOP 340, 012031, (2012),
http://dx.doi.org/10.1109/ICO-IP.2011.5953716
[14] J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings, Appl. Phys. Lett. 100, 214104, (2012), http://arxiv.org/pdf/1203.5938v1,
http://dx.doi.org/10.1063/1.4720511
[15] J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings, Vir. J. Nan. Sci. & Tech. 25, 23, (2012),
http://dx.doi.org/10.1063/1.4720511
[16] A. Asenbaum, C. Pruner, E. Wilhelm, M. Mijakovic, L. Zoranic, F. Sokolic, B. Kezic, A. Perera, Structural changes in ethanol-water mixtures: Ultrasonics, Brillouin scattering and molecular dynamics studies, Vibrational Spectroscopy, 60, 102 – 106, (2012),
http://www.sciencedirect.com/science/article/pii/S0924203111001639
[17] J. Klepp, C. Pruner, Y. Tomita, J. Kohlbrecher, M. Fally, Three-port beam splitter for cold neutrons using holographic SiO2 nanoparticle-polymer diffraction gratings, Appl. Phys. Lett. 101, 154104, (2012),
http://dx.doi.org/10.1063/1.4758686,
http://arxiv.org/pdf/1205.3425
[18] J. Klepp, C. Pruner, Y. Tomita, P. Geltenbort, I. Drevenšek – Olenik, S. Gyergyek, J. Kohlbrecher and M. Fally, Holographic gratings for slow-neutron optics, Materials, 5, 2788 – 2815 (2012),
http://dx.doi.org/10.3390/ma5122788
[19] Meng-Ju Sher, Yu-Ting Lin, M. T. Winkler, E. Mazur, C. Pruner, A. Asenbaum, Mid-infrared absorptance of silicon hyperdoped with chalcogens via fs-laser irradiation, J. Appl. Phys., 113, 063520 (2013),
http://dx.doi.org/10.1063/1.4790808
[20] R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, Y. Tomita, Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics, Opt. Lett. 39, 3453-3456, (2014),
http://dx.doi.org/10.1364/OL.39.003453
[21] J. Guo, R. Fujii, T. Ono, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings, Opt. Lett. 39, 6743-6746 (2014),
http://dx.doi.org/10.1364/OL.39.006743
[22] A. Asenbaum, C. Pruner, and E. Wilhelm, “Ultrasonics 1: Speed of ultrasound, isentropic compressibility and related properties of liquids”, Chapter 3 in Volume Properties: Liquids, Solutions and Vapours, E. Wilhelm and T. Letcher, eds., The Royal Society of Chemistry, 345-394 (2015), ISBN 978-1-84973-899-6,
http://dx.doi.org/10.1039/9781782627043-00345
[23] Y. Tomita, E. Hata, K. Momose, S. Takayama, X. Liu, K. Chikama, J. Klepp, C. Pruner, and M. Fally; “Photopolymerizable nanocomposite photonicmaterials and their holographic applications inlight and neutron optics”, J. Mod. Optic, 63, 11-41, Invited topical review, (2016),
http://dx.doi.org/10.1080/09500340.2016.1143534
[24] J. Klepp, C. Pruner, Y. Tomita, P. Geltenbort, J. Kohlbrecher and M. Fally; “Advancing data analysis for reectivitymeasurements of holographic nanocomposite gratings”, Journal of Physics: Conference Series 746, 012022 (2016),
http://iopscience.iop.org/article/10.1088/1742-6596/746/1/012022/meta
[25] M. Licen, I. Drevensek-Olenik, L. Coga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, J. Klepp; “Neutron diffraction from superparamagnetic colloidal crystals”, Journal of Physics and Chemistry of Solids 110, 234–240 (2017);
http://www.sciencedirect.com/science/article/pii/S0022369716312422
Non peer-reviewed:
[1] M. Bichler, C. Pruner, H. Eckerlebe, M. Fally, Neutron diffraction from holographic nanoparticle-polymer composites, Experimental report to GKSS GeNF, (03/2010).
[2] J. Klepp, M. Fally, C. Pruner, J. Kohlbrecher and R. A. Rupp, Neutron mirrors from nanoparticle-polymer composites, Experimental Report to PSI, (06/2010).
[3] J. Klepp, C. Pruner, P. Geltenbort, H. Rauch, R. A. Rupp and M. Fally, Tests of holographically generated diffraction gratings with very cold neutrons, Experimental Report to ILL, Instrument PF2, Experiment 3-14-278, (07/2010).
[4] J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, M. Fally, Holographic grating-mirrors for very cold neutrons, Exp. Report to ILL, Instrument PF2, Experiment 3-14-294, (08/2011).
[5] J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, M. Fally, Test of new holographic grating mir rors for very cold neutrons, Exp. Report to ILL, Instrument PF2, Experiment TEST-2020, (10/2011).
[6] J. Klepp, M. Fally, P. Geltenbort, C. Pruner, Y. Tomita, Holographic absorption gratings recorded in CdSe nanoparticle-polymer composites for neutron-optics, (2012). Exp. Report to ILL, Institut Laue-Langevin, Grenoble, France, e-print
[7] J. Klepp, M. Fally, P. Geltenbort, C. Pruner, Y. Tomita, Angle amplification effect in holographic gratings, (2013). Exp. Report to ILL, Institut Laue-Langevin, Grenoble, France, e-print
[8] J. Klepp, M. Fally, C. Pruner, and Y. Tomita. Slow-neutron mirrors from holographic nanopartice-polymer composites. Annual report, millenium program and technical developments, Institut Laue-Langevin, Grenoble, France, (2013). Selected as Research Highlight at Institute Laue Langevin.
http://www.ill.eu/fileadmin/users_files/Annual_Report/AR-13/catalogue/appli.html.
Functions:
Stellvertretender Mittelbausprecher der Naturwissenschaftlichen Fakultät der Universität Salzburg
Geschäftsführer des Christian Doppler Fonds
https://www.christian-doppler.net/
Postal address:
Universität Salzburg, Naturwissenschaftliche Fakultät
Fachbereich Chemie und Physik der Materialien
Jakob Haringer Straße 2a
A-5020 Salzburg, Österreich
Tel: ++43-662-8044-6253
e-mail:
http://www.uni-salzburg.at