Forschungsinteressen

Vom Funktionsmaterial zum aktiven Bauelement für Energiespeicherung und -umwandlung


Barrierefreiheit: Kurzbeschreibung des Bildes Energiespeicherung und –umwandlung gehören aktuell zu den relevantesten Forschungsthemen, da die Nutzung von erneuerbaren Energiequellen elementar für die Durchführung der Pläne zur CO2-Reduktion ist. Energiegewinnung aus Wind und Sonne und die elektrochemische Speicherung dieser Energie in Batterien oder Brennstoffen wie Wasserstoff erfordern Lösungen, die sowohl in ihrer Effizienz als auch in ihrer Skalierbarkeit verbessert werden müssen. Obwohl bereits einige Fortschritte erzielt wurden, zeigen die vorgeschlagenen Konzepte in vielen Fällen gute Effizienzen im Labor, aber sie sind nicht immer einfach skalierbar oder zu kostenintensiv für eine Herstellung im größeren Maßstab. Unser langfristiges Ziel ist es, zur Entwicklung von Lösungen im Gebiet der Energiespeicherung beizutragen, einerseits durch die Entwicklung von Funktionsmaterialen mit Hilfe von (skalierbaren) festkörperchemischen Synthesen und einfachen Abscheidetechniken, andererseits durch grundlagenwissenschaftlichen Verständnisaufbau im Bereich von Struktur-Eigenschaftsbeziehungen von Energiespeichermaterialien, der dann zu verbesserten und langlebigeren Werkstoffen führt.

Aktive Materialien für die photoelektrochemische Energiespeicherung in solaren Brennstoffen


Barrierefreiheit: Kurzbeschreibung des BildesOxidnitride beispielsweise sind sehr geeignete Materialen für photoelektrochemische Wasserspaltung. Die Entwicklung von effizienten Photoelektrodenmaterialien ist ein wichtiger Teil unserer Arbeit. In diesem Zusammenhang ist eine umfassende Charakterisierung sehr wichtig, weil sowohl Struktur, Zusammensetzung, Kristallinität, Porosität als auch Transporteigenschaften die photoelektrochemische Effizienz beeinflussen. Die genaue Bestimmung dieser Eigenschaften ist notwending, um die Aktivität der Funktionsmaterialien in Abhängigkeit der Synthesemethoden zu verstehen und zu verbessern. Wir konnten bereits einige Erfolge erzielen, einerseits durch detailliertes Materialverständnis basierend auf breiter Analytik (XRD, TEM, SEM, photoelektrochemische Untersuchungen) und andererseits durch weitere Veränderungen in der Synthese, wie zum Beispiel einer besseren Kontrolle der Porosität oder Veränderung der Ladungsträgerdichte durch Substitution. Für eine funktionierende Photoelektrode sind darüber hinaus Schutzschichten und Co-Katalysatoren zentral. Deshalb beinhaltet die Aufgabe, aktive Materialien für Photoelektroden zu entwickeln, die Bereitstellung von geeigneten Photokatalysatoren inklusive Additive und die Entwicklung von skalierbaren Herstellungsprozessen, die in ihrer Gesamtheit zu einem funktionierenden Bauelement führen.

Leitende Netzwerke und Elektrodenaufbau: Hybridmaterialien


Barrierefreiheit: Kurzbeschreibung des BildesLeitende Netzwerke spielen eine sehr wichtige Rolle in Energiespeicherdispositiven. Ein gutes Beispiel sind Li-Ionenbatterien. Um eine Hochleistungselektrode zu entwickeln, ist nicht nur das aktive Material selbst wichtig, sondern auch die Art und Weise, wie eine elektrisch leitfähige Verbindung zwischen den (meist isolierenden, oxidischen) Partikeln aufgebaut wird. Deshalb untersuchen wir, wie die Elektrode in ihrer Gesamtheit funktioniert und nicht nur das Elektrodenmaterial. Eine wichtige Frage ist, wie ein leitendes Netzwerk zwischen Partikeln ausgebildet werden kann, ohne die Eigenschaften des aktiven Materials negativ zu verändern, bzw. mit dem Ziel, diese sogar zu verbessern. Das leitende Netzwerk kann aus einer großen Anzahl von Materialklassen bestehen und unterschiedliche Längenskalen bedienen. Anorganische oder keramische Brücken sind häufig lokal auf die Nanoskala begrenzt, während Schichtsysteme wie reduziertes Graphenoxid (RGO) oder Carbon Nanotubes (CNTs) langreichweitige Verbindungen im μm-Bereich aufbauen. Die Synthese und anschließende Abscheidung von Hybrid- oder Kompositmaterialien ist einer der Wege, die wir verfolgen, um Elektroden mit leitenden Netzwerken zu herzustellen.

Funktionsmaterialien für Li-Ionen-Batterien und darüber hinaus


Barrierefreiheit: Kurzbeschreibung des BildesWir untersuchen V-haltige Oxide auf ihre Eignung als Insertionsmaterialien, wie zum Beispiel von Li+ oder Na+. Mit dem Austausch des zu interkalierenden Ions ändern sich dabei sowohl die Interkalationsplateaus als auch die Kinetik. Uns interessiert, die Unterschiede im Interkalationsverhalten zu verstehen und so gezielt bessere Kathodenmaterialien für Post-Li Batterien zu entwickeln. Umfassende physikalisch-chemische Untersuchungen sind notwendig, um die Oxidationszustände und Strukturveränderungen der Übergangsmetall(verbindungen) in Abhängigkeit vom Ladungszustand der Batterie und vom Batterietyp zu untersuchen. Gleichzeitig dient das Verständnis für die Veränderung des Materials während des Ladungs- und Entladungsprozesses dazu, potentielle Degradationsprozesse besser zu verstehen.